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Presentation of the setting

I We consider the Circular Beta Ensemble (CβE), corresponding to n
points on the unit circle U, whose probability density with respect to the
uniform measure on Un is given by

Cn,β ∏
1≤j<k≤n

|λj −λk |β,

for some β > 0.

I For β = 2, one gets the distribution of the eigenvalues of a
Haar-distributed matrix on the unitary group U(n). Other matrix models
has been found by Killip and Nenciu in 2004 for general β.
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I If (λ
−1
j )1≤j≤n are the eigenvalues of a random matrix, one can consider

the characteristic polynomial:

Xn(z) =
n

∏
j=1

(1−λjz),

and its logarithm

logXn(z) =
n

∑
j=1

log(1−λjz),

which can be well-defined in a continuous way, except on the half-lines
λ
−1
j [1,∞).

I We will be interested in the extremal values of logXn(z) on the unit
circle.
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I It can be proven that
(√

β/2 logXn(z)
)

z∈D
(D being the open unit disc)

tends in distribution to a complex Gaussian holomorphic function: for
β = 2, it is a direct consequence of a result by Diaconis and
Shahshahani (1994) on the moments of the traces of the CUE.

I This Gaussian function G has the following covariance structure:

E[G(z)G(z ′)] = log

(
1

1− zz ′

)
.

I The variance of G goes to infinity when |z| → 1, and for z ∈ U,
logXn(z) does not converge in distribution.
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I When n goes to infinity,√
β

2 logn
logXn(z) −→

n→∞
N C,

where N C denotes a complex Gaussian variable Z such that

E[Z ] = E[Z 2] = 0, E[|Z |2] = 1.

For β = 2, this result has been proven by Keating and Snaith (2000).

I Without normalization, (
√

β/2 logXn(z))z∈C tends in distribution to a
complex Gaussian field on the unit circle, whose correlation between
points z,z ′ ∈ U is given by log |z− z ′|. Note that this field is not defined
on single points, since the correlation has a logarithmic singularity when
z ′ goes to z.
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I The logarithm of the characteristic polynomial, multiplied by
√

β/2, is a
rather complex (yet integrable) regularization of the log-correlated
Gaussian field given above.

I In this regularization, the correlation of the field saturates when |z− z ′|
is of order 1/n, which is consistent with the result by Keating and Snaith.

I For this kind of regularization, it is conjectured that the maximum of the
field is of order logn− (3/4) log logn. This behavior (in particular the
constant −3/4) is believed to be universal, i.e. not depending on the
detail of the model.

I Such result has been proven for Gaussian regularizations (by Madaule,
in 2015, then generalized by Ding, Roy and Zeitouni), for branching
random walks and branching Brownian motion.

6 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I The logarithm of the characteristic polynomial, multiplied by
√

β/2, is a
rather complex (yet integrable) regularization of the log-correlated
Gaussian field given above.

I In this regularization, the correlation of the field saturates when |z− z ′|
is of order 1/n, which is consistent with the result by Keating and Snaith.

I For this kind of regularization, it is conjectured that the maximum of the
field is of order logn− (3/4) log logn. This behavior (in particular the
constant −3/4) is believed to be universal, i.e. not depending on the
detail of the model.

I Such result has been proven for Gaussian regularizations (by Madaule,
in 2015, then generalized by Ding, Roy and Zeitouni), for branching
random walks and branching Brownian motion.

6 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I The logarithm of the characteristic polynomial, multiplied by
√

β/2, is a
rather complex (yet integrable) regularization of the log-correlated
Gaussian field given above.

I In this regularization, the correlation of the field saturates when |z− z ′|
is of order 1/n, which is consistent with the result by Keating and Snaith.

I For this kind of regularization, it is conjectured that the maximum of the
field is of order logn− (3/4) log logn. This behavior (in particular the
constant −3/4) is believed to be universal, i.e. not depending on the
detail of the model.

I Such result has been proven for Gaussian regularizations (by Madaule,
in 2015, then generalized by Ding, Roy and Zeitouni), for branching
random walks and branching Brownian motion.

6 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I The logarithm of the characteristic polynomial, multiplied by
√

β/2, is a
rather complex (yet integrable) regularization of the log-correlated
Gaussian field given above.

I In this regularization, the correlation of the field saturates when |z− z ′|
is of order 1/n, which is consistent with the result by Keating and Snaith.

I For this kind of regularization, it is conjectured that the maximum of the
field is of order logn− (3/4) log logn. This behavior (in particular the
constant −3/4) is believed to be universal, i.e. not depending on the
detail of the model.

I Such result has been proven for Gaussian regularizations (by Madaule,
in 2015, then generalized by Ding, Roy and Zeitouni), for branching
random walks and branching Brownian motion.

6 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I From the log-correlated field, one can also define the Gaussian
multiplicative chaos, introduced by Kahane in 1985, as a random
measure µ(α), formally given by

dµ(α)

dµ
(z) =

eαGU(z)

E[eαGU(z)]

where GU is a log-correlated Gaussian field on U, and µ is the uniform
measure on U.

I This measure µ(α) is non-degenerate for α ∈ (0,2)

I Webb (2014) has proven that for β = 2 and α <
√

2, and for µ(α)
Xn

given
by

dµ(α)
Xn

dµ
(z) =

|Xn(z)|α

E[|Xn(z)|α]
,

one has
µ(α)

Xn
−→
n→∞

µ(α).
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Statement of the main result

I For β = 2, Fyodorov, Hiary and Keating (2012), have given a conjecture
on the maximum of the characteristic polynomial, which is the following:

sup
z∈U

log |Xn(z)|−
(

logn− 3
4

log logn

)
−→
n→∞

1
2

(K1 + K2),

in distribution, where K1 and K2 are two independent Gumbel random
variables.

I In November 2015, Arguin, Belius and Bourgade have proven that

supz∈U log |Xn(z)|
logn

−→
n→∞

1

in probability.
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I In Feburary 2016, Paquette and Zeitouni have proven:

supz∈U log |Xn(z)|− logn
log logn

−→
n→∞
−3

4
.

I We expect that the conjecture of Fyodorov, Hiary and Keating can be
generalized to β ensembles:

√
β/2sup

z∈U
log |Xn(z)|−

(
logn− 3

4
log logn

)
−→
n→∞

K ,

where K is a limiting random variable. It may be possible that 2K is the
sum two independent Gumbel variables, but we have no argument
supporting such a statement.
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Such a result seems very challenging. However, in a work in progress, we
expect to be able to prove the following result:

Conjecture
For any function h tending to infinity at infinity,∣∣∣∣√β/2sup

z∈U
ℜ logXn(z)−

(
logn− 3

4
log logn

)∣∣∣∣≤ h(n),

∣∣∣∣√β/2sup
z∈U

ℑ logXn(z)−
(

logn− 3
4

log logn

)∣∣∣∣≤ h(n),

with probability tending to 1 when n goes to infinity.

The statement on the imaginary part gives information on the number of
eigenvalues lying on arcs of the unit circle.
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If the result above is true, we have the following:

Corollary
For z1,z2 ∈ U, let N(z1,z2) be the number of points λj lying on the arc
coming counterclockwise from z1 to z2, and N0(z1,z2) its expectation (i.e. the
length of the arc multiplied by n/2π). Then,∣∣∣∣∣π√β/8 sup

z1,z2∈U
|N(z1,z2)−N0(z1,z2)|−

(
logn− 3

4
log logn

)∣∣∣∣∣≤ h(n)

with probability tending to 1 when n goes to infinity.
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I In the sequel of the talk, we will sketch a proof of the following result we
have completely checked:

Theorem
With probability tending to 1,√

β/2sup
z∈U

ℜ logXn(z)≤ logn− 3
4

log logn +
3
2

log log logn + h(n),

√
β/2sup

z∈U
ℑ logXn(z)≤ logn− 3

4
log logn +

3
2

log log logn + h(n).

I At the end of the talk, we will briefly give some elements of the proof of
the lower bound part of the stronger result stated above.
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Orthogonal polynomials on the unit circle

If ν is a probability measure on the unit circle, the Gram-Schmidt procedure
applied on L2(ν) to the sequence (zk )k≥0 gives a sequence (Φk )0≤k<m of
monic orthogonal polynomials, m being the (finite or infinite) cardinality of the
support of ν. If m < ∞, the procedure stops after Φm−1 since all L2(ν) is
spanned: we then define

Φm(z) := ∏
λ∈Supp(ν)

(z−λ),

which vanishes in L2(ν). Moreover, we define Φ∗k (z) := zk Φk (1/z̄).
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I There exists a sequence (αj )0≤j<m of complex numbers, |αj |= 1 if
j = m−1 < ∞, |αj |< 1 otherwise, called Verblunsky coefficients, such
that the polynomials above satisfy the so-called Szegö recursion: for
j < m,

Φj+1(z) = zΦj (z)−αj Φ
∗
j (z),

Φ∗j+1(z) =−αjzΦj (z) + Φ∗j (z).

I Moreover, Killip and Nenciu have found an explicit probability distribution
for the Verblunsky coefficients, for which one can recover the
characteristic polynomial of the Circular Beta Ensemble.
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I Let (αj )j≥0, η be independent complex random variables, rotationally
invariant, such that |αj |2 is Beta(1,(β/2)(j + 1))-distributed and |η|= 1
a.s.

I Let (Φj ,Φ
∗
j )j≥0 be the sequence of polynomials obtained from the

Verblunsky coefficients (αj )j≥0 and the Szegö recursion.
I Then, we have the equality in distribution:

Xn(z) = Φ∗n−1(z)− zηΦn−1(z).

I If we couple the polynomials in such a way that we have acutally an
equality, then (

sup
z∈U
| logXn(z)− logΦ∗n−1(z)|

)
n≥1

is tight: it is then sufficient to study the extreme values of logΦ∗n instead
of logXn.
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I The recursion can be rewritten by using the deformed Verblunsky
coefficients (γj )j≥0, which have the same modulii as (αj )j≥0 and the
same joint distribution.

I We have, for θ ∈ [0,2π),

logΦ∗k (eiθ) =
k−1

∑
j=0

log
(

1− γje
iψj (θ)

)
.

I The so-called relative Prüfer phases (ψk )k≥0 satisfy:

ψk (θ) = (k + 1)θ−2
k−1

∑
j=0

log

(
1− γjeiψj (θ)

1− γj

)
.
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Sketch of proof of a non-sharp upper bound

I In order to bound ℜ logΦ∗n and ℑ logΦ∗n on the unit circle, it is sufficient
to bound these quantities on 2n points.

I Indeed, if Um denotes the set of m-th roots of unity, we have for all
polynomials Q of degree at most n:

sup
z∈U
|Q(z)| ≤ 14 sup

z∈U2n

|Q(z)|.

I If Q(0) = 1 and Q has all roots outside the unit disc, then

sup
z∈U

Arg(Q(z))≤ sup
z∈Un

Arg(Q(z)) + 2π.
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I For any z ∈ U, we have the equality in distribution:

logΦ∗k (z) =
k−1

∑
j=0

log(1− γj ),

I By computing and then estimating the exponential moments of this sum
of independent random variables, we get for s > 0, t ∈ R,

E[esℜ logΦ∗k (z)+tℑ logΦ∗k (z)]≤ (ke)(s2+t2)/(2β).

I Using a Chernoff bound with s =
√

2β, t = 0, we deduce that for n→∞,

P

(√
β

2
ℜ logΦ∗n(z)≥ logn + h(n)

)
= o(1/n)

and the same for the imaginary part.
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I Using a union bound on the 2n-th roots of unity,

P

(√
β

2
sup
z∈U

ℜ logΦ∗n(z)≤ logn + h(n)

)
−→
n→∞

1,

which gives a weak version of the upper bound stated above.

I Moreover, if we define

Bn := {bejc,0≤ j ≤ blognc}∪{n},

then

P
(
∀k ∈ Bn, sup

z∈U
ℜ logΦ∗k (z)≤ logk + log logn + h(n)

)
−→
n→∞

1.

I This estimate is useful in order to prove a sharper upper bound.
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I In order to show the sharper upper bound previously stated, it is
sufficient to show:

P
(
∀k ∈ Bn, sup

z∈U
ℜ logΦ∗k (z)≤ logk + log logn + h(n),

sup
z∈U

ℜ logΦ∗n(z)≥ logn− 3
4

log logn +
3
2

log log logn + h(n)

)
−→
n→∞

0.

I By doing a union bound on U2n, it is sufficient to prove that the
probability of the same event for a single z ∈ U is o(1/n) when n goes
to infinity.
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I For fixed z ∈ U, (logΦ∗k (z))k≥0 is a random walk with independent
increments, given by log(1− γk ).

I We have an equality in law:

log(1− γk ) = log

(
1−eiΘk

√
Ek

Ek + Γk

)
where (Ek )k≥0, (Γk )k≥0, (Θk )k≥0 are independent variables,
respectively exponentially distributed, Gamma of parameter
(β/2)(k + 1) and uniform on [0,2π).

I If we replace Ek + Γk by (β(k + 1))/2 and log(1− y) by −y , we get a
Gaussian variable of variance 1/(β(k + 1)).
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I One can prove that (
√

β/2 logΦ∗k (z))k≥0,z∈U can be coupled, with an
a.s. bounded difference, with a field (Zk (z))k≥0,z∈U, with complex
Gaussian marginals, with independent increments for fixed θ:

Zk (eiθ) :=
k−1

∑
j=0

N C
j eiψj (θ)

√
j + 1

.

I In this way, we can deduce that it is essentially sufficient to show (N
corresponding to logn), for a Brownian motion W that:

P
(
∀j ∈ {1,2, . . . ,N−1},Wj ≤

√
2(j + logN + h(N)) ,

WN ≥
√

2

(
N− 3

4
logN +

3
2

log logN + h(N)

))
= o(e−N).
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I Using Girsanov’s theorem, it is enough to show

P
(
∀j ∈ {1,2, . . . ,N−1},Wj ≤

√
2(logN + h(N)) ,

WN ≥
√

2

(
−3

4
logN +

3
2

log logN + h(N)

))
= O

(
N−3/2(logN)3

)
.

I This result can be deduced from a suitable version of the ballot theorem,
or from the joint law of a Brownian motion and its past supremum.

I We expect that one can remove the term (3/2) log log logn in the main
result by suitable optimizing the barrier logk + log logn + h(n) in the
proof. This would give a sharp upper bound (i.e. with a tight difference
with the conjectured behavior).
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Strategy for a lower bound

I In order to get a sharp lower bound, we would have to show that with
high probability, there exists θ ∈ [0,2π) such that

ℜZn(eiθ)≥ logn− 3
4

log logn−h(n).

I Let En(θ) be any event implying the previous inequality. It is sufficient to
show:

P(Nn > 0) −→
n→∞

1,

where Nn is the number of j ∈ {0, . . . ,n−1} such that En(e2iπj/n)
occurs.
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I Paley-Zygmund inequality implies that

P(Nn > 0)≥ (E[Nn])2

E[N2
n ]

.

I Hence it is enough to show:

E[N2
n ]≤ (E[Nn])2 (1 + o(1)),

and then to have a suitable lower bound of E[Nn] and a suitable upper
bound of E[N2

n ].
I For that, we need to choose events En(θ), in such a way that their

probability is not too small and that En(θ) and En(θ′) are not too much
correlated if θ is not too close to θ.
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I The event En(θ) corresponds to the fact that the random walk
(ℜZk (θ))k∈Bn stays in a suitably chosen envelope.

I Since the Prüfer phases incrase by approximately θ at each step, for
θ ∈ [0,π], the increments of the random walks (Zk (0))k∈Bn and
(Zk (θ))k∈Bn are "roughly similar" for k ≤ 1/θ and "roughly independent"
afterwards.

I We can then do similar computations as for branching Gaussian random
walks.

26 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I The event En(θ) corresponds to the fact that the random walk
(ℜZk (θ))k∈Bn stays in a suitably chosen envelope.

I Since the Prüfer phases incrase by approximately θ at each step, for
θ ∈ [0,π], the increments of the random walks (Zk (0))k∈Bn and
(Zk (θ))k∈Bn are "roughly similar" for k ≤ 1/θ and "roughly independent"
afterwards.

I We can then do similar computations as for branching Gaussian random
walks.

26 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

I The event En(θ) corresponds to the fact that the random walk
(ℜZk (θ))k∈Bn stays in a suitably chosen envelope.

I Since the Prüfer phases incrase by approximately θ at each step, for
θ ∈ [0,π], the increments of the random walks (Zk (0))k∈Bn and
(Zk (θ))k∈Bn are "roughly similar" for k ≤ 1/θ and "roughly independent"
afterwards.

I We can then do similar computations as for branching Gaussian random
walks.

26 / 27



Presentation of the setting
Statement of the main result

Orthogonal polynomial on the unit circle
Sketch of proof of a non-sharp upper bound

Sketch of proof of a sharper upper bound
Strategy for a lower bound

Thank you for your attention!
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