TDBIE treatment of the wave equation with a nonlinear impedance boundary condition

Lehel Banjai

Maxwell Institute for Mathematical Sciences Heriot-Watt University, Edinburgh

Banff, 19.1.2016

Joint work with: Alexander Rieder (TU Wien)

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- 3 Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Statement of the problem

Scattering with nonlinear impedance BC:

$$\begin{split} \ddot{u}^{\text{tot}} - \Delta u^{\text{tot}} &= 0 & \text{in } \Omega^+ \times (0, T), \\ \partial_{\nu}^+ u^{\text{tot}} &= g(\dot{u}^{\text{tot}}) & \text{on } \Gamma \times (0, T) \\ u^{\text{tot}} &= u^{\text{inc}} & \text{in } \Omega^+ \times \{t \leq 0\}. \end{split}$$

- Ω-bounded Lipshitz domain
- $\Gamma = \partial \Omega$, $\Omega^+ = \mathbb{R}^d \setminus \overline{\Omega}$, ν exterior normal
- $g(\cdot)$ given nonlinear function, e.g., g(x) = x + x|x|.
- Incident wave u^{inc} satisfies

$$\ddot{u}^{\text{inc}} - \Delta u^{\text{inc}} = 0$$
 in $\Omega^+ \times \mathbb{R}$

Motivation

Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$\ddot{u} - \Delta u = 0 \qquad \text{in } \Omega, t > 0,$$

$$\dot{u} + m(x)\ddot{z} + f(x)\dot{z} + g(x)z = 0, \qquad \text{on } \Gamma, t > 0,$$

$$\partial_{\nu}u - g(\dot{u}) + h(x)\eta(\dot{z}) = 0 \qquad \text{on } \Gamma, t > 0.$$

Motivation

Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$\begin{split} \ddot{u} - \Delta u &= 0 & \text{in } \Omega, \, t > 0, \\ \dot{u} + m(x) \ddot{z} + f(x) \dot{z} + g(x) z &= 0, & \text{on } \Gamma, \, t > 0, \\ \partial_{\nu} u - g(\dot{u}) + h(x) \eta(\dot{z}) &= 0 & \text{on } \Gamma, \, t > 0. \end{split}$$

- Scattering of EM waves by nonlinear coatings [Haddar, Joly '01]
 - Nonlinear system in a thin layer:

$$\dot{E} - \nabla \times H = 0, \qquad \dot{H} + \dot{M} + \nabla \times E = 0$$

with M linked to H through a ferromagnetic law.

A nonlinear boundary condition obtained by a thin layer approximation.

Motivation

Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber '12]

$$\begin{split} \ddot{u} - \Delta u &= 0 & \text{in } \Omega, \, t > 0, \\ \dot{u} + m(x) \ddot{z} + f(x) \dot{z} + g(x) z &= 0, & \text{on } \Gamma, \, t > 0, \\ \partial_{\nu} u - g(\dot{u}) + h(x) \eta(\dot{z}) &= 0 & \text{on } \Gamma, \, t > 0. \end{split}$$

- Scattering of EM waves by nonlinear coatings [Haddar, Joly '01]
 - Nonlinear system in a thin layer:

$$\dot{E} - \nabla \times H = 0, \qquad \dot{H} + \dot{M} + \nabla \times E = 0$$

with M linked to H through a ferromagnetic law.

- ▶ A nonlinear boundary condition obtained by a thin layer approximation.
- Coupling with nonlinear circuits (see talk of Michielssen).

Conditions on g

$$\begin{split} \ddot{u}^{\text{tot}} - \Delta u^{\text{tot}} &= 0 & \text{in } \Omega^+ \times (0, T), \\ \partial_{\nu}^+ u^{\text{tot}} &= g \big(\dot{u}^{\text{tot}} \big) & \text{on } \Gamma \times (0, T) \end{split}$$
 Energy $E(t) = \frac{1}{2} \| \dot{u}^{\text{tot}} \|_{L^2(\Omega^+)}^2 + \frac{1}{2} \| \nabla u^{\text{tot}} \|_{L^2(\Omega^+)}^2 \text{ satisfies}$
$$E(t) = E(0) - \int_0^t \langle g (\dot{u}^{\text{tot}}), \dot{u}^{\text{tot}} \rangle_{\Gamma} d\tau. \end{split}$$

Conditions on g

$$\begin{split} \ddot{u}^{\text{tot}} - \Delta u^{\text{tot}} &= 0 & \text{in } \Omega^+ \times (0, T), \\ \partial_{\nu}^+ u^{\text{tot}} &= g(\dot{u}^{\text{tot}}) & \text{on } \Gamma \times (0, T) \end{split}$$

Energy $E(t) = \frac{1}{2} \|\dot{u}^{\text{tot}}\|_{L^2(\Omega^+)}^2 + \frac{1}{2} \|\nabla u^{\text{tot}}\|_{L^2(\Omega^+)}^2$ satisfies

$$E(t) = E(0) - \int_0^t \langle g(\dot{u}^{\text{tot}}), \dot{u}^{\text{tot}} \rangle_{\Gamma} d\tau.$$

Conditions on g ensuring well-posedness [Lasiecka, Tataru '93, Graber '12]

- $g \in C^1(\mathbb{R})$,
- g(0) = 0,
- $g(s)s \ge 0$, $\forall s \in \mathbb{R}$,
- $g'(s) \geq 0$, $\forall s \in \mathbb{R}$,
- g satisfies the growth condition $|g(s)| \le C(1+|s|^p)$, where

$$\begin{cases} 1$$

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Semigroup setting

Definition

Let H be a Hilbert space, and $A: H \to H$ be a (not necessary linear) operator with domain dom A. We call A maximally monotone if it satisfies:

- (i) $(Ax Ay, x y)_H \le 0$ $\forall x, y \in \text{dom } A$,
- (ii) range (I A) = H

Theorem (Komura-Kato)

Let $\mathcal A$ be a maximally monotone operator on a separable Hilbert space $\mathcal H$ with domain $\mathrm{dom}(\mathcal A) \subset \mathcal H$.

Then there exists unique solution $u(t) \in dom(A)$ of

$$\partial_t u - \mathcal{A}u = 0$$
 $u(0) = u_0 \in dom(\mathcal{A})$

and u is Lipschitz continuous on $[0, +\infty)$.

Let $\Delta t > 0$ and let $\partial_t^{\Delta t} u$ denote either 1st order (k = 1) or 2nd order backward difference formula (k = 2).

Let $\Delta t > 0$ and let $\partial_t^{\Delta t} u$ denote either 1st order (k = 1) or 2nd order backward difference formula (k = 2).

Theorem ([Nevanlinna '78])

There exists unique solution $u_{\Delta t}^n \in \text{dom } \mathcal{A}$ of

$$\partial_t^{\Delta t} u_{\Delta t} - \mathcal{A} u_{\Delta t} = 0,$$

assuming for starting values $u_j = u(j\Delta t)$ for $j \in 0, ... k$.

Further for $N\Delta t \leq T$:

$$\max_{n=0,\dots,N} \left\| u(t_n) - u_{\Delta t}^n \right\| \leq C \left\| \mathcal{A} u_0 \right\| \left[\Delta t + T^{1/2} (\Delta t)^{1/2} + \left(T + T^{1/2} \right) (\Delta t)^{1/3} \right].$$

For $u \in C^{p+1}([0,T],H)$, p – order of the multistep method,

$$\max_{n=0} \|u(t_n) - u_{\Delta t}^n\| \le CT\Delta t^p.$$

Setting

We will use the exotic transmission problem setting of [Laliena, Sayas '09].

- Closed sub-spaces $X_h \subseteq H^{-1/2}(\Gamma)$, $Y_h \subseteq H^{1/2}(\Gamma)$ (not necessarily finite dimensional).
- For $X_h \subseteq X$, the annihalator $X_h^{\circ} \subset X'$ is defined as

$$X_h^\circ = \big\{ f \in X' \ : \ \big\langle x, f \big\rangle_\Gamma = 0 \ \forall x \in X_h \big\}.$$

Nonlinear semigroup setting

Setting $v := \dot{u}$ we get

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \begin{pmatrix} v \\ \Delta u \end{pmatrix},$$

Consider the operator

$$\mathcal{A} := \begin{pmatrix} 0 & I \\ \Delta & 0 \end{pmatrix},$$

$$\operatorname{dom}(\mathcal{A}) := \left\{ (u, v) \in BL^{1} \times L^{2}(\mathbb{R}^{d}) : \Delta u \in L^{2}(\mathbb{R}^{d} \setminus \Gamma), v \in \mathcal{H}_{h} \right.$$
$$\left[\left[\partial_{\nu} u \right] \right] \in X_{h}, \partial_{n}^{+} u - g(\left[\left[\gamma v \right] \right]) \in Y_{h}^{\circ} \right\},$$

where

$$\mathcal{H}_h \coloneqq \left\{u \in H^1\left(\mathbb{R}^d \smallsetminus \Gamma\right) \colon \llbracket \gamma u \rrbracket \in Y_h, \gamma^- u \in X_h^\circ \right\}$$

and

$$BL^1 := \left\{ u \in H^1_{loc}(\mathbb{R}^d \setminus \Gamma) : \|\nabla u\|_{L^2(\mathbb{R}^d \setminus \Gamma)} < \infty \right\} / \ker \nabla.$$

Theorem

 ${\cal A}$ is a maximally monotone operator on ${\cal X}$, and generates a strongly continuous semigroup which solves

$$\begin{pmatrix} \dot{u} \\ \dot{v} \end{pmatrix} = \mathcal{A} \begin{pmatrix} u \\ v \end{pmatrix}, \quad u(0) = u_0, v(0) = v_0.$$

Assume $u_0, v_0 \in \mathcal{H}_h$. Then, the solution satisfies:

- (i) $(u, v) \in \text{dom } A$ and $u(t) \in \mathcal{H}_h$ and $v(t) \in \mathcal{H}_h$ for all t > 0.
- (ii) $u \in C^{1,1}([0,\infty), H^1(\mathbb{R}^d \setminus \Gamma)),$
- (iii) $\dot{u} \in L^{\infty}((0,\infty), H^1(\mathbb{R}^d \setminus \Gamma)),$
- (iv) $\ddot{u} \in L^{\infty}((0,\infty), L^2(\mathbb{R}^d)).$

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- 3 Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Boundary integral potentials and operators

With the Green's function defined as (Re s > 0)

$$\Phi(z;s) := \begin{cases} \frac{i}{4} H_0^{(1)} (is|z|), & \text{for } d = 2, \\ \frac{e^{-s|z|}}{4\pi|z|}, & \text{for } d \ge 3, \end{cases}$$

the single- and double-layer potentials:

$$(S(s)\varphi)(x) \coloneqq \int_{\Gamma} \Phi(x-y;s)u(y) \ dy$$

$$(D(s)\varphi)(x) \coloneqq \int_{\Gamma} \partial_{\nu(y)} \Phi(x-y;s)u(y) \ dy.$$

and their traces

$$\begin{split} V(s) : \ H^{-1/2}(\Gamma) \to H^{1/2}(\Gamma), & V(s) \coloneqq \gamma^{\pm} S(s), \\ K(s) : \ H^{1/2}(\Gamma) \to H^{1/2}(\Gamma), & K(s) \coloneqq \left\{ \left\{ \gamma S(s) \right\} \right\}, \\ K^{t}(s) : \ H^{-1/2}(\Gamma) \to H^{-1/2}(\Gamma), & K^{t}(s) \coloneqq \left\{ \left\{ \partial_{\nu} D(s) \right\} \right\}, \\ W(s) : \ H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma), & W(s) \coloneqq -\partial_{\nu}^{\pm} D(s). \end{split}$$

Calderón operators

$$B(s) := \begin{pmatrix} sV(s) & K \\ -K^t & s^{-1}W(s) \end{pmatrix}$$

$$B_{imp}(s) := B(s) + \begin{pmatrix} 0 & -\frac{1}{2}I \\ \frac{1}{2}I & 0 \end{pmatrix}.$$

Lemma [LB, Lubich, Sayas '15, Abboud et al '11]

There exists a constant $\beta > 0$, depending only on Γ , such that

$$\operatorname{Re}\left\langle B_{\operatorname{imp}}(s)\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right\rangle_{\Gamma} \geq \beta \min(1,|s|^2) \frac{\operatorname{Re}(s)}{|s|^2} \left\| (\varphi,\psi) \right\|_{\Gamma}^2,$$

where

$$|\!|\!|\!| (\varphi, \psi) |\!|\!|_{\Gamma}^2 \coloneqq |\!|\!| \varphi |\!|\!|_{H^{-1/2}(\Gamma)}^2 + |\!|\!| \psi |\!|\!|_{H^{1/2}(\Gamma)}^2.$$

Scattered field

Scattered field $u = u^{\text{scat}} = u^{\text{tot}} - u^{\text{inc}}$ satisfies

$$\ddot{u} - \Delta u = 0, \quad \text{in } \Omega^+$$

$$\partial_{\nu}^+ u = g(\dot{u} + \dot{u}^{inc}) - \partial_{\nu}^+ u^{inc}, \quad \text{on } \Gamma$$

$$u(0) = \dot{u}(0) = 0, \quad \text{in } \Omega^+.$$
(1)

Boundary integral formulation

$$B_{\rm imp}(\partial_t) \begin{pmatrix} \varphi \\ \psi \end{pmatrix} + \begin{pmatrix} 0 \\ g(\psi + \dot{u}^{inc}) \end{pmatrix} = \begin{pmatrix} 0 \\ -\partial_{\nu}^+ u^{inc} \end{pmatrix}. \tag{2}$$

- (i) If $u\coloneqq u^{scat}$ solves (1), then (φ,ψ) , with $\varphi\coloneqq -\partial_{\nu}^+u$ and $\psi\coloneqq \gamma^+\dot{u}$, solves (2).
- (ii) If (φ, ψ) solves (2), then $u := S(\partial_t)\varphi + \partial_t^{-1}D(\partial_t)\psi$ solves (1).

Time and space discretization

- Closed sub-spaces $X_h \subseteq H^{-1/2}(\Gamma)$, $Y_h \subseteq H^{1/2}(\Gamma)$ (not necessarily finite dimensional).
- $J_{\Gamma}^{Y_h}: H^{1/2}(\Gamma) \to Y_h$ a stable operator, e.g., Scott-Zhang.
- BDF1 or BDF2 based CQ with time-step $\Delta t > 0$.

Fully discrete problem

For all $n \in \mathbb{N}$, find $(\varphi^n, \psi^n) \in X_h \times Y_h$ such that:

$$\left\langle \left[B_{\text{imp}}(\partial_t^{\Delta t}) \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right]^n, \begin{pmatrix} \xi \\ \eta \end{pmatrix} \right\rangle_{\Gamma} + \left\langle g(\psi + J_{\Gamma}^{Y_h} \dot{u}^{inc}), \eta \right\rangle_{\Gamma} = \left\langle -\partial_{\nu}^+ u^{inc}, \eta \right\rangle_{\Gamma}$$

for all $n \in \mathbb{N}$, $(\xi, \eta) \in X_h \times Y_h$.

Solution in Ω^+ given by representation formula

$$u^n \coloneqq \left[S(\partial_t^{\Delta t})\varphi\right]^n + \left[(\partial_t^{\Delta t})^{-1}D(\partial_t^{\Delta t})\psi\right]^n.$$

Brief overview of basics of CQ

Discrete convolution

$$\left[B_{\mathsf{imp}}(\partial_t^{\Delta t})\begin{pmatrix} \varphi \\ \psi \end{pmatrix}\right]^n = \sum_{j=0}^n B_{n-j}\begin{pmatrix} \varphi_j \\ \psi_j \end{pmatrix}$$

• $\delta(z)$ generating function of BDF1 ($\delta(z) = 1 - z$) or BDF2 ($\delta(z) = 1 - z + \frac{1}{2}(1 - z)^2$)

$$B_{\text{imp}}(\delta(z)/\Delta t) = \sum_{j=0}^{\infty} B_j z^j.$$

• In particular $B_0 = B_{\rm imp}(\delta(0)/\Delta t)$ and hence

$$\left\langle B_0\begin{pmatrix} \varphi \\ \psi \end{pmatrix}, \begin{pmatrix} \varphi \\ \psi \end{pmatrix} \right\rangle_{\Gamma} \geq \beta_0 \Delta t \, |\!|\!|\!| (\varphi, \psi) |\!|\!|\!|^2_{\Gamma}$$

• $\partial_t^{\Delta t} u$ is the finite difference derivative, e.g., for BDF1

$$\partial_t^{\Delta t} u(t_n) = \frac{1}{\Delta t} \big(u(t_n) - u(t_{n-1}) \big).$$

Proposition (Browder and Minty)

X a real separable and reflexive Banach space, $A: X \to X'$ satisfies

- $A: X \to X'$ is continuous,
- the set A(M) is bounded in X' for all bounded sets $M \subseteq X$,
- $\lim_{\|u\|\to\infty} \frac{\langle A(u), u \rangle_{X'\times X}}{\|u\|} = \infty,$
- $\langle A(u) A(v), u v \rangle_{X' \times X} \ge 0$ for all $u, v \in X$.

Then the variational equation

$$\langle A(u), v \rangle_{X' \times X} = \langle f, v \rangle_{X' \times X} \qquad \forall v \in X$$

has at least one solution for all $f \in X'$. If the operator is strongly monotone, i.e.

$$\langle A(u) - A(v), u - v \rangle_{X' \times X} \ge \beta \|u - v\|_X^2$$
 for all $u, v \in X$,

then the solution is unique.

Well-posedness of the discrete system

Theorem

The fully discrete system of equations has a unique solution in the space $X_h \times Y_h$ for all $n \in \mathbb{N}$.

Proof:

• At each time-step we need to solve

$$\left(\left[B_0\begin{pmatrix}\varphi^n\\\widetilde{\psi}^n\end{pmatrix}\right]^n, \begin{pmatrix}\xi\\\eta\end{pmatrix}\right)_{\Gamma} + \left\langle g(\widetilde{\psi}^n), \eta\right\rangle_{\Gamma} = \left\langle f^n, \begin{pmatrix}\xi\\\eta\end{pmatrix}\right\rangle_{\Gamma}$$
with $f^n := -\partial_{\nu}^+ u^{inc}(t_n) - \sum_{j=0}^{n-1} B_{n-j}\begin{pmatrix}\varphi^j\\\psi^j\end{pmatrix} + B_0 J_{\Gamma}^{Y_h} \dot{u}^{inc}$ and
$$\widetilde{\psi}^n := \psi^n + J_{\Gamma}^{Y_h} u^{inc}(t_n).$$

- Ellipticity of B_0 and $xg(x) \ge 0$ imply coercivity.
- Strong monotonicity follows from

$$\langle g(\eta_1) - g(\eta_2), \eta_1 - \eta_2 \rangle_{\Gamma} = \int_{\Gamma} g'(s(x)) (\eta_1(x) - \eta_2(x))^2 dx \ge 0.$$

ullet Boundedness follows from properties of B_j and assumptions on g.

Equivalence of discretized PDE and BIE

Lemma

For all $n \in \mathbb{N}$, find $u_{\Lambda t}^n, v_{\Lambda t}^n \in \mathcal{H}_h$ such that:

$$\begin{split} \left[\partial_t^{\Delta t} u_{\Delta t}\right]^n &= v_{\Delta t}^n \\ \left[\partial_t^{\Delta t} v_{\Delta t}\right]^n &= \Delta u_{\Delta t}^n \\ \partial_{\nu}^+ u_{\Delta t}^n - g\left(\llbracket \gamma v_{\Delta t}^n \rrbracket + J_{\Gamma}^{Y_h} \dot{u}^{inc}(t_n)\right) + \partial_{\nu} u^{inc}(t_n) \in X_h^{\circ}, \\ \llbracket \partial_{\nu} u \rrbracket \in X_h. \end{split}$$

- (i) If the sequences φ^n , ψ^n solve the fully discrete BIE then $u_{\Delta t} \coloneqq S(\partial_t^{\Delta t})\varphi + \left(\partial_t^{\Delta t}\right)^{-1}D(\partial_t^{\Delta t})\psi$ and $v_{\Delta t} \coloneqq \partial_t^{\Delta t}u_{\Delta t}$ solve the above.
- (ii) If $u_{\Delta t}, v_{\Delta t}$ solves the above, then $\varphi := -[\![\partial_{\nu} u_{\Delta t}]\!], \ \psi := [\![\gamma v_{\Delta t}]\!]$ solve the fully discretized BIE.

Convergence: time-discretization

Theorem

The discrete solutions, obtained by $u_{\Delta t} := S(\partial_t^{\Delta t}) \varphi + (\partial_t^{\Delta t})^{-1} D(\partial_t^{\Delta t}) \psi$ converge to the exact solution u, with the following rate:

$$\max_{n=0,\ldots,N} \|u(t_n) - u_{\Delta t}^n\| \lesssim T(\Delta t)^{1/3}.$$

If we assume, that the exact solution satisfies $(u, \dot{u}) \in C^{p+1}([0, T], BL^1 \times L^2(\mathbb{R}^d \setminus \Gamma))$, then

$$\max_{n=0,\ldots,N} \|u(t_n) - u_{\Delta t}^n\| \lesssim T(\Delta t)^p.$$

Convergence results full discretization (low regularity)

With standard boundary element spaces X_h and Y_h .

Theorem (low regularity)

For the fully discrete scheme, we have

$$u_{\Delta t} + u^{inc} \rightharpoonup u^{\text{tot}}$$
 pointwise a.e. in (BL^1)
 $\partial_t^{\Delta t} u_{\Delta t} + \dot{u}^{inc} \rightharpoonup \dot{u}^{\text{tot}}$ pointwise a.e. in $L^2(\mathbb{R}^d)$

If aditionally g strictly monotone and $|g(s)| \lesssim |s|^{\frac{d-1}{d-2}}$ for $d \geq 3$

$$u_{\Delta t} + u^{inc} \to u^{\text{tot}} \quad \text{in } L^{\infty}\left((0, T); BL^{1}\right)$$
$$\partial_{t}^{\Delta t} u_{\Delta t} + \dot{u}^{inc} \to \dot{u}^{\text{tot}} \quad \text{in } L^{\infty}\left((0, T); L^{2}(\mathbb{R}^{d})\right).$$

with a rate in time of $(\Delta t)^{1/3}$.

Convergence results (higher regularity)

Assumptions (regularity)

Assume, that the exact solution of has the following regularity properties:

- **1** $u \in C^2((0,T); H^1(\Omega^-)),$
- $u \in C^2((0,T); L^2(\Omega^-)),$

for some $m \ge 1/2$.

Convergence results (higher regularity)

Assumptions (regularity)

Assume, that the exact solution of has the following regularity properties:

- **1** $u \in C^2((0,T); H^1(\Omega^-)),$
- $u \in C^2((0,T); L^2(\Omega^-)),$

for some $m \ge 1/2$.

Theorem (high regularity)

Optimal rates in both space and time for BDF1.

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Comments on implementation

- Recursive, marching on in time implementation of CQ.
- Newton iteration in each step, with solution at previous step as initial guess.
- In practice, only a few steps of Newton needed.
- Main cost still the computation of history.
- Implementation in BEM++.

Setting

- g(s) := s + |s| s
- $u^{inc}(x,t) := F(x-t)$ with $F(s) := -\cos(\omega s)e^{-\left(\frac{s-A}{\sigma}\right)^2}$.
- The parameters were $\omega \coloneqq \pi/2$, $\sigma = 0.5$, A = 2.5.

Convergence

$$\begin{array}{|c|c|c|}\hline & \max_{\substack{n\Delta t \leq T \\ -\mathbf{B}-\max_{\substack{n\Delta t \in T \\ n\Delta t \in T}}} \left\|(\partial_t^{\Delta t})^{-1}\psi^n - \partial_t^{-1}\psi(t_n)\right\|_{H^{1/2}} \end{array}$$

Space independent scattering by sphere: Exterior

Space independent scattering by sphere: Interior

Outline

- Statement and motivation
- 2 Domain setting and time-discretization
- Boundary integral formulation and its discretization
- 4 Numerical experiments
- Conclusion

Conclusions

This talk:

- A wave scattering problem with nonlinear damping.
- Convergence analysis of full CQ/Galerkin in space discretization.

Future work:

- More complex boundary conditions (DE on the boundary).
- Higher-order CQ, i.e., Runge-Kutta.
- Regularity of solution.