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Statement of the problem

Scattering with nonlinear impedance BC:

ittt — Autot = 0 in Q% x (0, 7),
G g nTx(@.T)
utot:uinc in Q+><{t§0}.

@ Q-bounded Lipshitz domain
e =00, Q" =RY\Q, v- exterior normal
@ g(-) - given nonlinear function, e.g., g(x) = x + x|x|.

@ Incident wave u'"¢ satisfies

i - AU =0  inQ"xR



Motivation

@ Acoustic (nonlinear) boundary conditions [Beale, Rosencrans '74, Graber
'12]
u-Au=0 inQ,t>0,
u+m(x)z+f(x)z+g(x)z=0, onl,t>0,
Oyu—g(i)+h(x)n(z)=0 onl,t>0.
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E—VXH:O, H+M+VxE=0

with M linked to H through a ferromagnetic law.
» A nonlinear boundary condition obtained by a thin layer approximation.

e Coupling with nonlinear circuits (see talk of Michielssen).



Conditions on g

gt — Autet = 0 in Q" x (07 T)a
0 - (i) on 1< (0,T)

Energy £(t) = 3| L'/t°t||i2(9+) + 2| vutt ”%2(Q+) satisfies

E(t) - E(O)-f0t<g(ut°t),ut°t>rd7.
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Conditions on g

it - Au™*t =0 in Q" x (0, T),
ohutet = g (i) onx(0,T)

Energy £(t) = 3| ut°t||L2(Q+) + 2| vutt ”%2(Q+) satisfies

E(t) - E(O)-f0t<g(ut°t),ut°t>rd7.

Conditions on g ensuring well-posedness [Lasiecka, Tataru '93, Graber '12]
g CH(R),

g(0) =0,

g(s)s>0, VseR,

g'(s) >0, VseR,

g satisfies the growth condition |g(s)| < C(1+]s|”), where

l<p<oo d=2,
1<p<dd d>3.

2

6
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Semigroup setting

Definition

Let H be a Hilbert space, and A: H — H be a (not necessary linear)
operator with domain dom . A. We call A maximally monotone if it
satisfies:

(i) (Ax-Ay,x-y)y <0 Vx,y edomA,
(ii) range (I - A)=H

Theorem (Komura-Kato)

Let A be a maximally monotone operator on a separable Hilbert space H
with domain dom(A) c H.
Then there exists unique solution u(t) € dom(.A) of

Oru—Au=0 u(0) = ug € dom(A)

and u is Lipschitz continuous on [0, +c0).




Let At >0 and let 92ty denote either 1st order (k = 1) or 2nd order
backward difference formula (k = 2).



Let At >0 and let 92ty denote either 1st order (k = 1) or 2nd order
backward difference formula (k = 2).

Theorem ([Nevanlinna '78])

There exists unique solution ux, € dom A of
At
8t UAt — .AUAt = 0,

assuming for starting values u; = u(jAt) for j€0,... k.

Further for NAt < T:

max[u(ty) = up| < C |l Auo [at+ TH(A0)2+ (T+ TH) (A1)

For ue CP*1([0, T],H), p — order of the multistep method,

max |u(tn) — up,| < CTALP.

=U,...,




Setting

We will use the exotic transmission problem setting of [Laliena, Sayas '09].

o Closed sub-spaces X, ¢ H"Y2(T), Y, ¢ HY?(I') (not necessarily finite
dimensional).

@ For X}, ¢ X, the annihalator X, c X' is defined as

Xy ={feX" : (x,f)r=0VxeX}.
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Nonlinear semigroup setting

Setting v := i we get
u\ (v
v] \Au)’

0/
A':(A 0)’

dom(A) := {(u, v) e BLYx [2(RY): Aue L2(RINT),veH,

Consider the operator

[0,u] € Xs, 05 - g([7v]) € vﬁ},
where
Hpy = {ueH! (Rd N F) yul € Yo, v ue Xy}
and

BL]. = {U € H&)C(Rd AN r) : HVU”l_z(Rd\r) < oo}/kerV
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Theorem

A is a maximally monotone operator on X', and generates a strongly
continuous semigroup which solves

(3) - A(C)7 u(0) = up, v(0) = vo.

Assume ug, vo € Hp. Then, the solution satisfies:
(i) (u,v) edom A and u(t) € Hp and v(t) € Hy, for all £ > 0.
(i) ue CH([0,00), HY(RI\T)),

(i) e L ((0,00), H* (RY\T)),

(iv) e L>((0,00), 2(RY)).
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Boundary integral potentials and operators
With the Green's function defined as (Res > 0)

THSY (islz]),  ford =2,
d»(z:s)::{:s.? o
F|Z|7 or > y

the single- and double-layer potentials:
(5()¢) (x) = [ @(x=yis)uly) dy

(D()¢) ()= [ 0,y @(x=yis)uly) dy.

and their traces

V(s): HY2(M) — HY3(r), V(s) = 7*S(s),
K(s): HY2(T) » HY2(I), K(s) = {{75(s)}},
Ki(s): HY2(T) > H7Y2(T), K'(s) = {{0,D(s)}},

W(s): HY2(r) > HY2(I), W(s) := -0:D(s).
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Calderén operators

_[sV(s) K
B(s) = ( _Kt slvv(s))

_1
Bimp(s) = B(s)+(fl él)

2

Lemma [LB, Lubich, Sayas '15, Abboud et al '11]

There exists a constant 5 > 0, depending only on I, such that

Re(B;mp(s) (;j) (w)) > Bmin(L[sP%) |e<|5) o o),

where

1o, I? = lol sy + 19 oy -
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Scattered field
Scattered field u = 15t = 4ot — 4" satisfies

i-Au=0, inQ"

Ofu=g(i+iu™) -3 u™, onl (1)
u(0)=u(0)=0, inQ".
Boundary integral formulation
0 0
|mp(8t)( ) (g(w_i_ ulnc)) ( a;uinc) . (2)
(i) If u:=u"" solves (1), then (p,), with ¢ := -9 u and ¢ =" i,

solves (2).
(ii) If (¢,1) solves (2), then u:= S(0;)¢p + 0;1D(0;) solves (1).
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Time and space discretization

o Closed sub-spaces X, ¢ H™Y/2(T"), Y}, ¢ HY/?(I") (not necessarily finite

dimensional).
° er” : H1/2(F) — Y}, a stable operator, e.g., Scott-Zhang.
@ BDF1 or BDF2 based CQ with time-step At > 0.

Fully discrete problem
For all ne N, find (¢",9") € X, x Y}, such that:

[t () ) e 70,

for all ne N, (&,m) € Xp x Y.

(_8;uinc7n>r

Solution in Q" given by representation formula

u" = [S(07)e]" + [(98) D) y]"
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Brief overview of basics of CQ

@ Discrete convolution

ot (1)) - S ()

@ 0(z) generating function of BDF1 (§(z) =1 - z) or BDF2
(0(z)=1-z+ %(1 —2)2)

Bimp (6(2)/At) = 5 B;Z.
j=0
@ In particular By = Bimp(6(0)/At) and hence

<Bo (z) , (:j))r > BoAt (g, )2

° 8tAtu is the finite difference derivative, e.g., for BDF1

¢ u(tn) = 27 (u(tn) = u(ta-1)).
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Proposition (Browder and Minty )
X a real separable and reflexive Banach space, A: X — X' satisfies
@ A: X — X’ is continuous,
@ the set A(M) is bounded in X’ for all bounded sets M ¢ X,
|im <A(u)7 u)X’XX =
Jul oo [ ul
o (A(u) = A(v),u—=Vv)xix 20forall u,veX.

Then the variational equation

(A(u)vv)X’xX:(f7V)X’><X VVEX

has at least one solution for all f € X’. If the operator is strongly
monotone, i.e.

(o,¢]

(A(W) = A(V), u=V)xrx 2 Blu-v]% forall u,veX,

then the solution is unique.




Well-posedness of the discrete system

Theorem

The fully discrete system of equations has a unique solution in the space
Xp x Yy for all neN.

Proof:
@ At each time-step we need to solve

=) G -t G

3 n-1 1 )
with " := —8;umc(t,,) - Z Bn-j ((’OI) 4 BoJthL'lmC and
j=0 e

D=+ ST ().
e Ellipticity of By and xg(x) >0 imply coercivity.
@ Strong monotonicity follows from

(g(m) —g(n2),m —m2)r = frg'(S(X))(m(X) ~12(x))? dx 2 0.

@ Boundedness follows from properties of B; and assumptions on g.
20/32



Equivalence of discretized PDE and BIE

Lemma
For all neN, find uR,, va, € Hp such that:

[GtAtuAt]n A7
[8tAtht]n = AU},
Oy e — g ([VAD + ™ () + Byu™ (t) € X,
[0, u] € Xp.

(i) If the sequences ", ¥" solve the fully discrete BIE then
upt == S(OA ) + (BtAt)_l D(92%)1p and vay := 02t up, solve the
above.

(ii) If uat,var solves the above, then ¢ := —[0,uat], ¥ = [yvat] solve
the fully discretized BIE.




Convergence: time-discretization

Theorem

The discrete solutions, obtained by ua; := S(O2)p + (021 1D(9A)y
converge to the exact solution u, with the following rate:

max u(ta) - uhl § T(A0)M.

If we assume, that the exact solution satisfies
(u,ir) e CPYL([0, T], BLY x L2 (RY\T)), then

max[u(tn) — ua.| 5 T(AL).

TV




Convergence results full discretization (low regularity)

With standard boundary element spaces X}, and Y.

Theorem (low regularity)

For the fully discrete scheme, we have

upe + U™ — 4™ pointwise a.e. in (BL')

ORtupe + i ~ ™t pointwise a.e. in L2(RY)

d-1
If aditionally g strictly monotone and |g(s)| < |s|42 for d >3

upg + U -yt in L% ((0,T); BLl)
O tupe + 0™ > i in L ((0, T); L2(R)).

with a rate in time of (At)Y/3,
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Convergence results (higher regularity)

Assumptions (regularity)
Assume, that the exact solution of has the following regularity properties:
Q ueC?((0,T);HY(Q)),
Q@ e C?((0,T);L2(Q)),
Q Yu,yTuel=((0,T),H™(T)),
Q Oju,0fuel™((0,T),H™(T)),
Q@ Uel>((0,T),H"(Q2)),
Q yriel™®((0,T),HH(I)),
for some m > 1/2.
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Convergence results (higher regularity)

Assumptions (regularity)
Assume, that the exact solution of has the following regularity properties:
Q ueC?((0,T);HY(Q)),
Q@ e C?((0,T);L2(Q)),
Q Yu,ytiuel®((0,T),H™T)),
Q Oju,0fuel™((0,T),H™(T)),
Q@ Uel>((0,T),H"(Q2)),
Q yriel™®((0,T),HH(I)),
for some m > 1/2.

Theorem (high regularity)

Optimal rates in both space and time for BDF1.
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Comments on implementation

@ Recursive, marching on in time implementation of CQ.

@ Newton iteration in each step, with solution at previous step as initial

guess.
@ In practice, only a few steps of Newton needed.
@ Main cost still the computation of history.

@ Implementation in BEM++.



Setting

@ g(s):=s+]s|s
ﬂ)Z

o U (x,t) = F(x —t) with F(s) := —cos(ws)e (%5

@ The parameters were w := /2, 0 =0.5, A=2.5.
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Convergence

T T T
’
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107!

error
T T T T
Lol

1072
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T/At

—&= max [|072) 7" = 97 )| 1 e
—&= max [|(07)7"" =0, o(t) |10
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Space independent scattering by sphere: Exterior
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Space independent scattering by sphere: Interior
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Conclusions

This talk:

@ A wave scattering problem with nonlinear damping.

e Convergence analysis of full CQ/Galerkin in space discretization.

Future work:

@ More complex boundary conditions (DE on the boundary).
o Higher-order CQ), i.e., Runge-Kutta.

@ Regularity of solution.
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