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Invisibility cloak with metamaterials

• Science, vol.312 (June 23, 2006): “Controlling Electromagnetic
Fields” (by J.B. Pendry, D. Schurig, D.R. Smith) [Cited 4510 times as
Feb.25, 2015, 5118 times as Jan.11, 2016]
• Science, vol.312 (June 23, 2006): “Optical Conformal Mapping” (by
Ulf Leonhardt). [Cited 2369 times as Feb.25,2015, 2657 times on
1/11/16]
• Science, vol.314 (Nov. 10, 2006): “Metamaterial Electromagnetic
Cloak at Microwave Frequencies” (by Schurig, Mock, etc.) [Cited 3689
times as Feb.25, 2016, 4163 times on 1/11/16]
• Greenleaf, Lassas and Uhlmann (2003): For ∇ ·σ∇u = 0, question of
uniqueness of determination of σ from DN map: u|∂Ω→ ν ·σ∇u|∂Ω.
• Approx cloaks via anomalous localized resonance: Milton and
Nicorovici (May 3, 2006). Further works by Bouchitte, Schweizer
(2010), Ammari etc (2013), Kohn, Weinstein etc (2014), ...
• Approximate/near cloaking: for electric impedance tomography
(Kohn, Weinstein 2008), for scalar waves governed by Helmholtz
equ.(Ammari, H.Y. Liu), for full Maxwell equs (G. Bao, J. Zou),...
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Figure: (A) The simulation of the cloak with the exact material properties, (B)
the simulation of the cloak with the reduced material properties, (C) the
experimental measurement of the bare conducting cylinder, and (D) the
experimental measurement of the cloaked conducting cylinder. Source: D.
Schurig et al, Science, V.314, Nov. 2006, 977-980. Invisible to an incident
plane wave at 8.5 GHz.
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Figure: 2D microwave cloaking structure (background image) with a plot of
the material parameters that are implemented. Source: D. Schurig et al,
Science, V.314, Nov. 2006, 977-980. Reduced parameters:
εz = ( b

b−a )2,µr = ( r−a
r )2,µθ = 1. Exact parameters:

εz = ( b
b−a )2 r−a

r ,µr = r−a
r ,µθ = r

r−a

Jichun Li (UNLV) Jan. 2016 6 / 46



Form invariant property for Maxwell’s equations

Theorem

Under a coordinate transformation x ′ = x ′(x), the Maxwell’s equations

∇×E + jωµH = 0, ∇×H− jωεE = 0, (1)

keep the same form in the transformed coordinate system:

∇
′×E ′+ jωµ

′H ′ = 0, ∇
′×H ′− jωε

′E ′ = 0, (2)

where all new variables are given by

E ′(x ′) = A−T E(x), H ′(x ′) = A−T H(x), A = (aij), aij =
∂x ′i
∂xj

, (3)

and
µ
′(x ′) = Aµ(x)AT/det(A), ε

′(x ′) = Aε(x)AT/det(A). (4)
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Proof of form invariant property: Post 1962, Milton
2006

From Maxwell’s equations, we have

jωµ
′H ′ = jωAµH/det(A) =−A∇×E/det(A).

Hence to prove the first identity of (2), we just need to show that

A∇×E = det(A) ·∇′×E ′. (5)

Recall the 3-D Levi-Civita symbol εijk , which is 1 if (i , j ,k) is an even
permutation of (1,2,3), −1 if it is an odd permutation, and 0 if any
index is repeated. Hence by using the Einstein notation (i.e., omitting
the summation symbols), we have

det(A) = εijk
∂x ′1
∂xi

∂x ′2
∂xj

∂x ′3
∂xk

, (6)

and the i th component of ∇×E : (∇×E)i = εijk
∂Ek
∂xj

, from which and

E = AT E ′, we obtain
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Proof of form invariant property: cont’d

(A∇×E)i =
∂x ′i
∂xm

εmjk
∂Ek

∂xj
=

∂x ′i
∂xm

εmjk
∂

∂xj
(

∂x ′l
∂xk

E ′l )

=
∂x ′i
∂xm

εmjk (
∂ 2x ′l

∂xj∂xk
E ′l +

∂x ′l
∂xk

∂E ′l
∂xj

)

=
∂x ′i
∂xm

εmjk
∂x ′l
∂xk

∂E ′l
∂xj

=
∂x ′i
∂xm

εmjk
∂x ′l
∂xk

∂E ′l
∂x ′p

∂x ′p
∂xj

. (7)

On the other hand, we have

det(A) · (∇
′×E ′)i = det(A) · εipl

∂E ′l
∂x ′p

. (8)

Comparing (7) with (8), the proof of (5) boils down to proof of the
following ∂x ′i

∂xm
εmjk

∂x ′l
∂xk

∂x ′p
∂xj

= det(A) · εipl , which is true by checking
different i ,p, l . For example, i = 1,p = 2, l = 3 is just (6).
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Carpet cloak: Li, Huang, Yang, Wood, SIAM J Appl
Math (2014)

Following Chen, Pendry, et al [Nature Communications, 2 (2011)], a
triangular carpet cloak can be achieved with spatially homogeneous
anisotropic dielectric materials.

Figure: The physical space of the carpet cloak.
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Carpet cloak modeling equations

Using mapping x ′ = x ,y ′ = H2−H1
H2

y + d−xsgn(x)
d H1 ((x = 0,y = 0) maps

to (x ′ = 0,y ′ = H1),(x = d ,y = 0) maps to (x ′ = d ,y ′ = 0),), we have

A =

[
∂x ′
∂x

∂x ′
∂y

∂y ′
∂x

∂y ′
∂y

]
=

[
1 0

−sgn(x)
d H1

H2−H1
H2

]
,

which leads to AAT =

[
1 −sgn(x)

d H1

−sgn(x)
d H1 (H2−H1

H2
)2 + (H1

d )2.

]
The relative

permittivity and permeability of the cloak:

ε =

[
a b
b c

]
=

[
H2

H2−H1
− H1H2

(H2−H1)d sgn(x)

− H1H2
(H2−H1)d sgn(x) H2−H1

H2
+ H2

H2−H1
(H1

d )2

]
,

µ =
H2

H2−H1
,

where sgn(x) denotes the standard sign function.
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Carpet cloak modeling equations: cont’d

Diagonalizing the symmetric matrix ε as:

ε = PΣPT , (9)

where λ1 =
a+c−
√

(a−c)2+4b2

2 , λ2 =
a+c+

√
(a−c)2+4b2

2 , and matrices Σ
and P are

Σ =

(
λ1 0
0 λ2

)
, P =

(
p1 p2
p3 p4

)
,

and elements pi ,1≤ i ≤ 4, are given as

p1 =

√
λ2−a
λ2−λ1

, p2 =

√
a−λ1

λ2−λ1
·sgn(x),

p3 =−

√
λ2−c
λ2−λ1

·sgn(x), p4 =

√
c−λ1

λ2−λ1
.
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Carpet cloak modeling equations: cont’d

It is easy to see that λ2 ≥ a+c+|a−c|
2 ≥ a > 1, which leads to

λ1 = 1/λ2 < 1. Mapping λ1 by the lossless Drude dispersion model:

λ1(ω) = 1−
ω2

p

ω2 ,

where ωp is plasma frequency, and ω is wave frequency.
Substituting ε = PΣPT into D = ε0εE , we obtain

ε0E = PΣ−1PT D,

which equals to

ε0Ex = λ
−1
1 (p2

1Dx + p1p3Dy ) + λ
−1
2 (p2

2Dx + p2p4Dy ),

ε0Ey = λ
−1
1 (p1p3Dx + p2

3Dy ) + λ
−1
2 (p2p4Dx + p2

4Dy ).

We can rewrite these equations as:
ε0λ2(−ω

2 + ω
2
p )Ex = (−ω

2)λ2(p2
1Dx + p1p3Dy ) + (−ω

2 + ω
2
p )(p2

2Dx + p2p4Dy ),

ε0λ2(−ω
2 + ω

2
p )Ey = (−ω

2)λ2(p1p3Dx + p2
3Dy ) + (−ω

2 + ω
2
p )(p2p4Dx + p2

4Dy ).
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Carpet cloak modeling equations: cont’d

The above equations can be written in time-domain (assuming eiωt

time dependence):

ε0λ2(∂t2 + ω
2
p )Ex = λ2∂t2(p2

1Dx + p1p3Dy ) + (∂t2 + ω
2
p )(p2

2Dx + p2p4Dy ),

ε0λ2(∂t2 + ω
2
p )Ey = λ2∂t2(p1p3Dx + p2

3Dy ) + (∂t2 + ω
2
p )(p2p4Dx + p2

4Dy ).

which equal to

ε0λ2

(
E t2 + ω

2
p E
)

= MADt2 + MBD, (10)

where matrices MA and MB are

MA =

(
p2

1λ2 + p2
2 p2p4 + p1p3λ2

p2p4 + p1p3λ2 p2
3λ2 + p2

4

)
, MB =

(
p2

2 p2p4
p2p4 p2

4

)
ω

2
p .
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Carpet cloak modeling equations: cont’d

The governing equations for the carpet cloak:

Dt = ∇×H, (11)

ε0λ2

(
E t2 + ω

2
p E
)

= MADt2 + MBD, (12)

µ0µHt =−∇×E , (13)

supplemented with initial conditions

D(x ,0) = D0(x), E(x ,0) = E0(x), H(x ,0) = H0(x), ∀ x ∈ Ω, (14)

and the perfect conducting boundary condition (PEC):

n×E = 0 on ∂ Ω. (15)

Here H denotes the magnetic field, and 2D vector and scalar curl
operators:

∇×H = (
∂H
∂y

,−∂H
∂x

)′, ∇×E =
∂Ey

∂x
− ∂Ex

∂y
, ∀E = (Ex ,Ey )′.
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Carpet cloak equations: existence

Lemma

The matrix MB is symmetric and non-negative definite, and the matrix
MA is symmetric positive definite.

Proof. For any vector (u,v)′, we have

(u,v)MB

(
u
v

)
= ω

2
p (p2u + p4v)2 ≥ 0,

and

(u,v)MA

(
u
v

)
= λ2(p1u + p3v)2 + (p2u + p4v)2 > 0.
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Carpet cloak equations: existence

Theorem

For any t ∈ [0,T ], there exists a unique solution
(E(·, t),H(·, t)) ∈ (H0(curl;Ω))×H(curl;Ω) of (11)-(15).

Proof. Denote Laplace transform by û(s) = L (u) =
∫

∞

0 e−stu(t)dt .
Taking the Laplace transforms of (11)–(13), we obtain

sD̂−D0 = ∇× Ĥ, (16)

ε0λ2

(
s2Ê −sE0−∂tE(0) + ω

2
p Ê
)

= MA

(
s2D̂−sD0−∂tD(0)

)
+ MBD̂, (17)

µ0µ(sĤ−H0) =−∇× Ê . (18)

Eliminating D̂, Ĥ, we obtain

ε0µ0µλ2(s4 + s2
ω

2
p )Ê

= (s2MA + MB)(µ0µ∇× Ĥ0−∇×∇× Ê) + µ0µsf 0(s),
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Carpet cloak equations: existence

which has a weak formulation as follows: Find Ê ∈H0(curl;Ω) such that

ε0µ0µλ2(s4 + s2
ω

2
p )(Ê ,u) + (s2MA + MB)(∇× Ê ,∇×u) = (F0(s),u)

(19)
holds true for any u ∈ H0(curl;Ω). Here
F0(s) = µ0µ(s2MA + MB)∇× Ĥ0 + µ0µsf 0(s), and

f 0(s) = ε0λ2(s2E0 + s∂tE(0)) + (s2MA + MB)D0−sMA(sD0−∂tD(0)).

The existence of a unique solution Ê ∈ H0(curl;Ω) of (19) is
guaranteed by the Lax-Milgram lemma.
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Carpet cloak equations: stability

Theorem
For the solution (D,E) of (11)–(13) and any t ∈ [0,T ], the following
stability holds true:(

||
√

MADt ||2 + ||
√

MBD||2 + ||E t2 ||2 + ||E t ||2 + ||E ||2 + ||
√

MA∇×E t ||2
)

(t)

≤ C
(
||
√

MADt ||2 + ||
√

MBD||2 + ||E t2 ||2 + ||E t ||2 + ||E ||2 + ||
√

MA∇×E t ||2
)

(0),

where the constant C > 0 depends on the physical parameters
ε0,µ0,d ,H1,H2 and ωp.
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The Finite element time-domain (FETD) scheme

Denote difference and average operators:

δτun =
un−un−1

τ
, δ

2
τ un =

un−2un−1 + un−2

τ2 ,

ûn+ 1
2 =

un+ 1
2 + un− 1

2

2
, ǔn+ 1

2 =
un+ 1

2 + 2un− 1
2 + un− 3

2

4
=

ûn+ 1
2 + ûn− 1

2

2
.

Construct a leap-frog scheme for the model equations (11)-(13): Given

approximations H0
h ,D

− 1
2

h ,D−
3
2

h ,E−
1
2

h ,E−
3
2

h , find Dn+ 1
2

h ,En+ 1
2

h ∈ V 0
h,

Hn+1
h ∈ Uh such that(

δτ D
n+ 1

2
h ,φh

)
= (Hn

h ,∇×φh), (20)

ε0λ2

(
δ

2
τ E

n+ 1
2

h ,ϕh

)
+ ε0λ2ω

2
p

(
Ě

n+ 1
2

h ,ϕh

)
=

(
MAδ

2
τ D

n+ 1
2

h ,ϕh

)
+

(
MBĎ

n+ 1
2

h ,ϕh

)
, (21)

µ0µ

(
δτ Hn+1

h ,ψh

)
=−(∇×E

n+ 1
2

h ,ψh), (22)

hold true for any φh, ϕh ∈ V 0
h, ψh ∈ Uh.
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The FETD scheme: cont’d

For rectangular elements K ∈ T h,

Uh = {ψh ∈ L2(Ω) : ψh|K ∈Q0,0, ∀ K ∈ T h},
VVV h = {φh ∈ H(curl ;Ω) : φh|K ∈Q0,1×Q1,0, ∀ K ∈ T h},

where Qi ,j denotes the space of polynomials whose degrees are less
than or equal to i and j in variables x and y , respectively.
While for triangular elements, we choose

Uh = {ψh ∈ L2(Ω) : ψh|K is a piecewise constant, ∀ K ∈ T h},
VVV h = {φh ∈ H(curl ;Ω) : φh|K = span{Li∇Lj −Lj∇Li}, i , j = 1,2,3,∀ K ∈ T h},

where Li denotes the standard linear basis function at vertex i of
element K . The space

VVV 0
h = {φh ∈VVV h, n×φh = 0 on ∂ Ω}

is introduced to impose the perfect conducting boundary condition
n×E = 0.
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The FETD scheme: discrete stability

Theorem

Denote the solution (Dn+ 1
2

h ,En+ 1
2

h ) of (20)–(22), and the discrete energy

ENGn =
ε0µ0µλ2(2 + ω2

p )

4
||δτ E

n+ 1
2

h ||2 +
ε0µ0µλ2ω2

p

2
||Ê

n+ 1
2

h ||2 +
1
2
||
√

MA∇×E
n+ 1

2
h ||2

+
1
2
||
√

MAδτ D
n+ 1

2
h ||2 +

1
2
||
√

MBD̂
n+ 1

2
h ||2 +

ε0µ0µλ2

2
||δ 2

τ E
n+ 1

2
h ||2 +

1
2
||
√

MA∇×δτ E
n+ 1

2
h ||2.

Then for any m ≥ 1 and a small constant Ccfl > 0, under the constraint

τ ≤ Ccflh2, (23)

we have

ENGm ≤C
(

ENG0 + ||
√

MA∇×E−
1
2

h ||
2 + ||δτE−

1
2

h ||
2 + ||

√
MBδτD−

1
2

h ||
2
)
.
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Numerical results: PML

To simulate the cloak phenomenon, we surround the physical domain
by a perfectly matched layer (PML), see Fig.3 (Right). In this paper, we
use the classical 2D Berenger PML, whose governing equations can
be written as

ε0
∂EEE
∂ t

+

(
σy 0
0 σx

)
EEE = ∇×Hz , (24)

µ0
∂Hzx

∂ t
+ σmxHzx =−

∂Ey

∂x
, (25)

µ0
∂Hzy

∂ t
+ σmyHzy =

∂Ex

∂y
, (26)

where Hz = Hzx + Hzy denotes the magnetic field, the parameters σi
and σm,i , i = x ,y , are the electric and magnetic conductivities in the x-
and y - directions, respectively. In our simulation, we use a PML with
12 rectangular cells in thickness around the physical domain.
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Numerical examples: Ex 1

In our simulation, we choose H1 = 0.05m,H2 = 0.2m,d = 0.2m, and
the physical domain Ω = [−0.3,0.3] m× [0,0.3] m, which is partitioned
by a uniform triangular mesh with a mesh size h = 0.00625. The PML
region surrounding Ω is partitioned by a uniform rectangular mesh.
Our final mesh yields 53330 total edges, 26960 total triangular
elements, and 6258 total rectangular elements. In the test, we choose
the time step size τ = 2∗10−13 s, and the total number of time steps
15000, i.e., the final simulation time T = 3.0 nanosecond (ns).
Example 1. The incident wave is generated by a plane wave source
Hz = 0.1sin(ωt) imposed at line x =−0.3, where ω = 2πf with
frequency f = 3.0 GHz. The numerical magnetic fields Hz at different
time steps are shown in Fig.4. Both figures show clearly that the plane
wave pattern is recovered very well after passing through the cloaking
region, which makes any objects hiden inside the cloaked region
invisible to observers at the far end.
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Numerical examples: Ex 1

Figure: Ex1. The Hz fields at 5000, 7000, 10000, 15000 time steps.
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Numerical examples: Ex 2

Example 2. The incident wave is generated by a Gaussian wave

Hz(x ,y , t) = 0.1e−(y−0.15)2/(60L)2
sin(ωt)

imposed along a slanted line y = x + 0.45, where L = 0.004
√

2, and
ω = 2πf with frequency f = 6.0 GHz. The numerical magnetic fields Hz
at different time steps are presented in Fig.5. To appreciate the cloak
phenomenon, in Fig.6 we present the magnetic fields Hz obtained
without the cloaking material. It is clear that the cloak phenomenon
disappears if the cloaking material is removed.
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Numerical examples: Ex 2

Figure: Ex2. The Hz fields at 5000, 7000, 10000, 15000 time steps.
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Numerical examples: Ex 2

Figure: Ex2. The Hz fields at 5000, 7000, 10000, 15000 time steps obtained
with the cloaking material removed.
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Numerical examples: Ex 3

Example 3. Since the ideal cloak requires that the permittivity and
permeability be anisotropic, which is quite difficult to be constructed.
The following reduced cloak material is suggested by Chen, Pendry et
al (2011):

µ = 1, ε =
H2

H2−H1

[
H2

H2−H1
− H1H2

(H2−H1)d sgn(x)

− H1H2
(H2−H1)d sgn(x) H2−H1

H2
+ H2

H2−H1
(H1

d )2

]
,

and the reduced cloak materials can be realized by natural anisotropic
materials. We solve Example 2 again by using this simplified
permittivity and permeability. The calculated magnetic fields Hz at
different time steps are presented in Fig.7, which shows that the cloak
phenomenon is almost the same as Fig.5 for the ideal permittivity and
permeability.
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Numerical examples: Ex 3

Figure: Ex3. The Hz fields at 5000, 7000, 10000, 15000 time steps obtained
with the simplified cloak material.
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Cyclindrical cloak in time domain

Cylindrical cloak: Pendry et al (Science 2006):

εr = µr =
r −R1

r
, εφ = µφ =

r
r −R1

,

εz = µz =

(
R2

R2−R1

)2 r −R1

r
,

R1 and R2: inner and outer radius of the cloak.
Transforming the polar coordinate system to the Cartesian coordinate
system, and using the Drude model for the permittivity:

εr (ω) = 1−
ω2

p

ω2− jωγ
,

we obtain

ε0εφ

(
∂ 2

∂ t2 + γ
∂

∂ t
+ w2

p

)
EEE

=

(
∂ 2

∂ t2 + γ
∂

∂ t
+ w2

p

)
MADDD + εφ

(
∂ 2

∂ t2 + γ
∂

∂ t

)
MBDDD,
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Cyclindrical cloak: cont’d

where we denote D = (Dx ,Dy )′ and

MA =

[
sin2

φ −sinφ cosφ

−sinφ cosφ cos2 φ

]
, MB =

[
cos2 φ sinφ cosφ

sinφ cosφ sin2
φ

]
.

Permeability using the Drude model:

µz(ω) = A

(
1−

ω2
pm

ω2− jωγm

)
, A =

R2

R2−R1
,

ωpm > 0 and γm ≥ 0: magnetic plasma and collision frequencies.(
∂ 2

∂ t2 + γm
∂

∂ t

)
Bz = µ0A

(
∂ 2

∂ t2 + γm
∂

∂ t
+ ω

2
pm

)
Hz .
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Analysis of the model: Li, Huang, Yang (Math Comp,
2015)

Assume that γ = γm.

µ0Aε0εφ (E t3 + γE t2 + ω
2
p E t )

= µ0A(MA + εφ MB)∇× (Ht2 + γHt ) + µ0Aω
2
p MA∇×H. (27)

To simplify the notation, we denote H = Hz , M = MA + εφ MB.
Also we have

µ0A(Ht2 + γHt + ω
2
pmH) =−∇×E t − γ∇×E . (28)

Taking curl of (28) and substituting into (27), we have

µ0ε0Aεφ (E t3 + γE t2 + ω
2
p E t ) + M∇×∇×E t + γM∇×∇×E

= −µ0AM∇× (ω
2
pmH) + µ0Aω

2
p MA∇×H. (29)
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Analysis of the model: cont’d

Lemma

Matrix MA is symmetric and non-negative definite, and M is SPD.

Lemma

For matrix MC = (MA + εφ MB)−1, MC ·MA = MA holds true.

Weak formulation: For any φ ∈ H0(curl;Ω),ψ ∈ L2(Ω),

(i) ε0µ0A[(εφ MCE t3 ,φ) + γ(εφ MCE t2 ,φ) + (ω
2
p εφ MCE t ,φ)]

+(∇×E t ,∇×φ) + γ(∇×E ,∇×φ)

= −µ0A(ω
2
pmH,∇×φ) + µ0A(ω

2
p MCMA∇×H,φ), (30)

(ii) µ0A
[
(Ht2 ,ψ) + γ(Ht ,ψ) + (ω

2
pmH,ψ)

]
= −(∇×E t + γ∇×E ,ψ). (31)

Jichun Li (UNLV) Jan. 2016 35 / 46



Analysis of the model: cont’d

Theorem
For the solution of (30)-(31), the following stability holds true:

ε0µ0A[(εφ McE t2 ,E t2)(t) + (ω
2
p εφ McE t ,E t )(t)] + (∇×E t ,∇×E t )(t)

+(∇×E ,∇×E)(t) + A(ω
2
p εφ McE ,E)(t)

+µ0A(||Ht ||20 + ||ωpmH||20)(t)≤ CF (0), (32)

where F (0) depends on initial conditions ∇×E(0),∇×E t (0),E(0),
E t (0),E t2(0),H(0),∇×H(0),Ht (0) and D(0).

Theorem
For any t ∈ [0,T ], there exists a unique solution
(E(·, t),H(·, t)) ∈ H0(curl;Ω)×H(curl;Ω) of (30)-(31).
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2D PML

2D Berenger’s perfectly matched layer (PML):

ε0
∂Ex

∂ t
+ σyEx =

∂
(
Hzx + Hzy

)
∂y

,

ε0
∂Ey

∂ t
+ σxEy =−

∂
(
Hzx + Hzy

)
∂x

,

µ0
∂Hzx

∂ t
+ σmxHzx =−

∂Ey

∂x
,

µ0
∂Hzy

∂ t
+ σmyHzy =

∂Ex

∂y
,

σi ,σmi , i = x ,y : homogeneous electric and magnetic conductivities in
the x and y directions.
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Mixed FE spaces

Rectangular edge element:

UUUh = {ψh ∈ L2(Ω) : ψh|K ∈Q0,0, ∀ K ∈ T h}, (33)

VVV h = {φh ∈ H(curl ;Ω) : φh|K ∈Q0,1×Q1,0, ∀ K ∈ T h}, (34)

Triangular edge element:

UUUh = {ψh ∈ L2(Ω) : ψh|K is a piecewise constant, ∀ K ∈ T h}, (35)
VVV h = {φh ∈ H(curl ;Ω) : φh|K = span{λi∇λj −λj∇λi}, i , j = 1,2,3,∀ K ∈ T h}.(36)

VVV 0
h = {φh ∈VVV h, n×φh = 0 on ∂ Ω}.

δτuuun =
uuun−uuun−1

τ
, δ

2
τ uuun =

uuun−2uuun−1 +uuun−2

τ2 ,

δ2τuuun =
uuun−uuun−2

2τ
, uuun−1 =

uuun + 2uuun−1 +uuun−2

4
, ûuun

=
uuun +uuun−1

2
.
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The TD-FEM for cloaking simulation

In the cloak region: for n = 1,2, ....., find Dn+ 1
2

h , En+ 1
2

h ∈ V 0
h , Hn

h ∈ Uh
such that(

δτDn+ 1
2

h ,φh

)
= (Hn

h ,∇×φh), (37)

ε0

(
εφ δ

2
τ En+ 1

2
h ,ϕh

)
+ ε0γ

(
εφ Ě

n+ 1
2

h ,ϕh

)
+ ε0

(
ω

2
p εφ Ê

n
h,ϕh

)
=

(
Mδ

2
τ Dn+ 1

2
h ,ϕh

)
+ γ

(
MĎ

n+ 1
2

h ,ϕh

)
+
(

ω
2
p MAD̂

n
h,ϕh

)
, (38)

µ0A
(

(δ
2
τ Hn+1

h ,ψh) + γ(Ȟn+1
h ,ψh) + (ω

2
p Ĥn+ 1

2
h ,ψh)

)
=−(∇× Ě

n+ 1
2

h + γ∇× Ê
n
h,ψh) (39)

hold true for any φh, ϕh ∈ V 0
h , ψh ∈ Uh.
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Numerical results: Li, Huang, Yang, Math Comp
(2015)

Use R1 = 0.1m,R2 = 0.2m, γ = γm = 0 in our Drude model.

A plane wave source: specified by Hz = 0.1sin(ωt), where ω = 2πf
with operating frequency f = 2.0 GHz.
A point source wave (same Hz) at a point (0:078; 0:4).

Simulation with 65536 triangles, 28672 rectangles, and time step
τ = 0.2ps.
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Numerical results

(a) (b)

Figure: (a): The cloak modeling setup; (b): A coarse mesh.
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Numerical results: plane wave source

(a) (b) (c)

Figure: Ey at (a) t = 0.8ns (4000steps); (b) t = 1.6 ns; (c) t = 3.2 ns.

(a) (b) (c)

Figure: Ey at (a) t = 4.0 ns; (b) t = 6.0 ns; (c) t = 8.0ns (40,000steps).
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Numerical results: point wave source

(a) (b) (c)

Figure: Ey at (a) t = 0.8ns (4000steps); (b) t = 1.6 ns; (c) t = 3.2 ns.

(a) (b) (c)

Figure: Ey at (a) t = 4.0 ns; (b) t = 6.0 ns; (c) t = 8.0ns (40,000steps).
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1 Introduction to electromagnetic cloaking with metamaterials

2 Cloaking models in time-domain

3 Summary
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Summary on modeling of metamaterials

J. Li and Y. Huang, Time-Domain Finite Element Methods for Maxwell’s
Equations in Metamaterials, Springer Series in Computational
Mathematics, vol.43, Springer, Jan. 2013, 302pp.

• well-posedness and regularity;
• mass-lumping;
• dispersion and dissipation analysis;
• multiscale technique;
• nonconforming elements;
• fast solvers: DDM, preconditioner,
• a posteriori error estimator; superconvergence;
• hp-adaptivity (including adaptive DG);
• frequency-domain analysis;
• potential applications: solar cell design, black hole, particle
detection,....
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Thanks for your attention!
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