Banff, August 1, 2013

Nonlinear flows and rigidity results on compact manifolds

Michael Loss

School of Mathematics
Georgia Tech
Atlanta GA, 30332–0160, USA

Joint work with Jean Dolbeault and Maria Esteban

 (\mathcal{M}, g) a compact d-dimensional Riemannian manifold without boundary. Can assume that

$$|\mathcal{M}| = \int_{\mathcal{M}} d\text{vol} = 1$$
.

Consider

$$-\Delta v + \frac{\lambda}{p-2}(v - v^{p-1}) = 0 \quad (*)$$

$$\lambda$$
 some constant, 2

The function 1 is a solution

Is it the only one?

The answer depends on the value of the constant λ

A minimizer of the functional

$$\frac{\int_{\mathcal{M}} |\nabla v|^2 + \frac{\lambda}{p-2} \int_{\mathcal{M}} v^2}{\left(\int_{\mathcal{M}} v^p\right)^{p/2}} \quad (**)$$

is a positive solution of (*) but not conversely

For λ small one expects that the constants are the only minimizers

Let λ_1 be the lowest non-vanishing eigenvalue of $-\Delta$ on \mathcal{M}

If $\lambda > \lambda_1$ then the minimizer is not a constant function and hence the equation (*) has non-constant solutions

Bochner - Lichnerowicz - Weizenböck formula

$$\frac{1}{2}\Delta |\nabla u|^2 = ||\mathbf{H}_g u||^2 + \nabla(\Delta_g u) \cdot \nabla u + \mathrm{Ric}(\nabla u, \nabla u)$$

$$\mathrm{Ric}(\cdot, \cdot)$$

is the Ricci tensor

If
$$\mathcal{M} = \mathbb{S}^d$$
 then

$$\operatorname{Ric}(\cdot, \cdot) = (d-1)g(\cdot, \cdot)$$

Define

$$\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$$
 and

$$\lambda_{\star} := \inf_{u \in H^{2}(\mathcal{M})} \frac{(1 - \theta) \int_{\mathcal{M}} (\Delta u)^{2} + \frac{\theta d}{d - 1} \int_{\mathcal{M}} \operatorname{Ric}(\nabla u, \nabla u)}{\int_{\mathcal{M}} |\nabla u|^{2}}.$$

Note that $0 < \theta < 1$ since 1

Theorem: (Dolbeault, Esteban, L) If

$$0 < \lambda < \lambda_{\star}$$

then for any 2 , equation (*) has 1 as the only solution.

Corollary:

Let
$$\rho = \inf_{\eta \in \mathbb{S}^d} \operatorname{Ric}(\eta, \eta) > 0$$

and let λ_1 be the first non-vanishing eigenvalue of $-\Delta$.

If $\lambda \leq (1-\theta)\lambda_1 + \theta \frac{d\rho}{d-1}$ then (*) has 1 as the only solution.

This follows from the inequality

$$\int_{\mathcal{M}} (\Delta u)^2 \ge \lambda_1 \int_{\mathcal{M}} |\nabla u|^2$$

Equality holds precisely when $u = \text{const.} + \phi$ where ϕ is an eigenfunction of the first non-zero eigenvalue of $-\Delta$.

$$\mathcal{M} = \mathbb{S}^d$$

$$\lambda_1 = d$$
, $\rho = (d-1)$

and hence for all $\lambda \leq d$, (*) has 1 as the only solution.

Corollary:

$$\int_{\mathbb{S}^d} |\nabla v|^2 d\sigma \ge \frac{\lambda}{p-2} \left[\|v\|_{L^p(\mathbb{S}^d)}^2 - \|v\|_{L^2(\mathbb{S}^d)}^2 \right]$$
 for all $\lambda \le d$ and $p < \frac{2d}{d-2}$

with equality if and only if v is the constant function

History:

Obata 1971/72, Gidas and Spruck 1981

1990 Bidaut-Véron and Véron, Beckner 1991,

Licois and Véron 1995, Bakry and Ledoux 1996, Demange 2008

The main idea is similar to the one used by Demange

by constructing a flow that transports any function to an optimizer

Sketch of the proof:

 $v = u^{\beta}$, β will be chosen later

$$\mathcal{F}[u] := \int_{\mathcal{M}} |\nabla(u^{\beta})|^2 + \frac{\lambda}{p-2} \left[\int_{\mathcal{M}} u^{2\beta} - \left(\int_{\mathcal{M}} u^{\beta p} \right)^{2/p} \right].$$

Flow:
$$u_t = u^{2-2\beta} \{ \Delta u + \kappa \frac{|\nabla u|^2}{u} \}$$

a porous medium type flow

$$\kappa = \beta(p-2) + 1$$

so that

$$\frac{d}{dt} \int_{\mathcal{M}} u^{p\beta} dv_g = 0$$

and

$$\frac{1}{2\beta^2} \frac{d}{dt} \mathcal{F}[u] = -\int_{\mathcal{M}} \left[(\Delta_g u)^2 + (\kappa + \beta - 1) \Delta_g u \frac{|\nabla u|^2}{u} + \kappa (\beta - 1) \frac{|\nabla u|^4}{u^2} \right] + \lambda \int_{\mathcal{M}} |\nabla u|^2.$$

$$\frac{1}{2\beta^2} \frac{d}{dt} \mathcal{F}[u] = -(1-\theta) \int_{\mathcal{M}} (\Delta_g u)^2 - \mathcal{G}[u] + \lambda \int_{\mathcal{M}} |\nabla u|^2,$$
where

$$\mathcal{G}[u] := \int_{\mathcal{M}} \left[\theta \left(\Delta_g u \right)^2 + \left(\kappa + \beta - 1 \right) \Delta_g u \frac{|\nabla u|^2}{u} + \kappa \left(\beta - 1 \right) \frac{|\nabla u|^4}{u^2} \right].$$

To understand $\mathcal{G}(u)$ the following quantity is key

$$Q_g^{\theta}u := L_g u - \frac{1}{\theta} \frac{d-1}{d+2} (\kappa + \beta - 1) \left[\frac{\nabla u \otimes \nabla u}{u} - \frac{g}{d} \frac{|\nabla u|^2}{u} \right].$$

$$L_g u := H_g u - \frac{g}{d} \Delta_g u \text{, trace free Hessian}$$

Theorem

Assume that $d \geq 2$. With the above notations, any positive function $u \in C^2(\mathcal{M})$ satisfies the identity

$$\mathcal{G}[u] = \frac{\theta d}{d-1} \left[\int_{\mathcal{M}} \|Q_g^{\theta} u\|^2 + \int_{\mathcal{M}} \operatorname{Ric}(\nabla u, \nabla u) \right] - \mu \int_{\mathcal{M}} \frac{|\nabla u|^4}{u^2}$$

with
$$\mu := \frac{1}{\theta} \left(\frac{d-1}{d+2} \right)^2 (\kappa + \beta - 1)^2 - \kappa (\beta - 1) - (\kappa + \beta - 1) \frac{d}{d+2}$$
 so that

$$\frac{1}{2\beta^2} \frac{d}{dt} \mathcal{F}[u] = -(1-\theta) \int_{\mathcal{M}} (\Delta_g u)^2 - \frac{\theta d}{d-1} \left[\int_{\mathcal{M}} \|Q_g^{\theta} u\|^2 + \int_{\mathcal{M}} \text{Ric}(\nabla u, \nabla u) \right] + \mu \int_{\mathcal{M}} \frac{|\nabla u|^4}{u^2} + \lambda \int_{\mathcal{M}} |\nabla u|^2$$

Lemma 1:

$$\int_{\mathcal{M}} (\Delta_g u)^2 = \frac{d}{d-1} \int_{\mathcal{M}} \| \operatorname{L}_g u \|^2 + \frac{d}{d-1} \int_{\mathcal{M}} \operatorname{Ric}(\nabla u, \nabla u).$$

$$A \cdot B := g^{i,m} g^{j,n} A_{i,j} B_{m,n} \text{ and } ||A||^2 := A \cdot A.$$

$$L_g u := H_g u - \frac{g}{d} \Delta_g u$$
, trace free Hessian

Proof:

$$\frac{1}{2}\Delta |\nabla u|^2 = ||\mathbf{H}_g u||^2 + \nabla(\Delta_g u) \cdot \nabla u + \mathrm{Ric}(\nabla u, \nabla u)$$

$$\int_{\mathcal{M}} (\Delta_g u)^2 = \int_{\mathcal{M}} \|\mathbf{H}_g u\|^2 + \int_{\mathcal{M}} \mathrm{Ric}(\nabla u, \nabla u)$$

$$\int_{\mathcal{M}} \| \operatorname{L}_{g} u \|^{2} = \int_{\mathcal{M}} \| \operatorname{H}_{g} u \|^{2} - \frac{1}{d} \int_{\mathcal{M}} (\Delta_{g} u)^{2},$$

Lemma 2:

$$\int_{\mathcal{M}} \Delta_g u \frac{|\nabla u|^2}{u} = \frac{d}{d+2} \int_{\mathcal{M}} \frac{|\nabla u|^4}{u^2} - \frac{2d}{d+2} \int_{\mathcal{M}} [L_g u] \cdot \left[\frac{\nabla u \otimes \nabla u}{u} \right]$$

Proof:

$$\int_{\mathcal{M}} \Delta_g u \frac{|\nabla u|^2}{u} = \int_{\mathcal{M}} \frac{|\nabla u|^4}{u^2} - 2 \int_{\mathcal{M}} [H_g u] \cdot \left[\frac{\nabla u \otimes \nabla u}{u} \right]$$

$$\mu = \left(\frac{1}{\theta} \left(\frac{d-1}{d+2}\right)^2 (p-1)^2 - (p-2)\right) \beta^2 - 2\frac{d+3-p}{d+2}\beta + 1$$

$$\beta = \frac{(d+2)(d+3-p)\theta}{(d-1)^2(p-1)^2 - (d+2)^2(p-2)\theta}$$

$$\theta = \frac{(d-1)^2 (p-1)}{d (d+2) + p - 1}$$
 and $\beta = \frac{d+2}{d+3-p}$

so that

$$\mathcal{G}[u] = \frac{\theta d}{d-1} \left[\int_{\mathcal{M}} \|Q_g^{\theta} u\|^2 + \int_{\mathcal{M}} \operatorname{Ric}(\nabla u, \nabla u) \right]$$

Two points of view:

Just a trial function calculation, nothing is really needed about the flow

Let $v = u^{\beta}$ be a minimizer of (**). Then consider

$$u \to u + \varepsilon u^{2-2\beta} \{ \Delta u + \kappa \frac{|\nabla u|^2}{u} \}$$

Since

$$\frac{1}{2\beta^2} \frac{d}{dt} \mathcal{F}[u] \le (\lambda - \lambda_{\star}) \int_{\mathcal{M}} |\nabla u|^2$$

we conclude that $\nabla u = 0$ for $\lambda < \lambda_{\star}$

Flow drives any function to a constant function

This shows that

$$0 = \mathcal{F}(\|u^{\beta}\|_p) \le \mathcal{F}(u^{\beta})$$

Nothing is said about the uniqueness of the optimizer

Example:
$$p = \frac{2d}{d-2}, d \neq 3$$

$$\theta = 1 \ , \quad \beta = \frac{d-2}{d-3}$$

$$\frac{1}{2\beta^2} \frac{d}{dt} \mathcal{F}[u] = \lambda \int_{\mathcal{M}} |\nabla u|^2 - \frac{d}{d-1} \int_{\mathcal{M}} \operatorname{Ric}(\nabla u, \nabla u) - \frac{d}{d-1} \int_{\mathcal{M}} \|Q_g^1 u\|^2$$

$$\Lambda_{\star} := \inf_{u \in H^{2}(\mathcal{M}) \setminus \{0\}} \frac{(1-\theta) \int_{\mathcal{M}} (\Delta_{g}u)^{2} + \frac{\theta d}{d-1} \int_{\mathcal{M}} \left[\|Q_{g}^{\theta}u\|^{2} + \operatorname{Ric}(\nabla u, \nabla u) \right]}{\int_{\mathcal{M}} |\nabla u|^{2}}$$

Theorem (Dolbeault, Esteban, L)

For any $p \in [1,2) \cup (2,2^*]$ if $d \geq 3$, $p \in (1,2) \cup (2,\infty)$ if d = 1 or 2, inequality (**) holds for all $\lambda \leq \Lambda$ where $\Lambda \in [\Lambda_{\star}, \lambda_1]$. Moreover, if $\Lambda_{\star} < \lambda_1$, then Λ is such that

$$\Lambda_{\star} < \Lambda \leq \lambda_1$$
.

If d = 1, then (**) holds for all $\lambda \leq \lambda_1$.