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Self-adjoint pencils

Let
P = P(λ) := A0 + λA1 + · · ·+ λnAn

be a family of operators in a Hilbert space H, depending on a parameter
λ ∈ C, with self-adjoint operator coefficients

Aj = (Aj)
∗, j = 1, . . . , n

Such a family is called a self-adjoint (polynomial) operator pencil. I shall
only deal in this talk with linear self-adjoint operator pencils written (with
some abuse of notation) as

P(λ) = A− λB, A = A∗,B = B∗.
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Spectrum of a pencil

We say that λ0 ∈ spec(P) if P(λ0) is not invertible, or, equivalently, if
0 ∈ spec(P(λ0)).

We say that λ0 is an eigenvalue of P if there exists u ∈ H \ {0} such that
P(λ0)u = 0, or, equivalently, if 0 is an eigenvalue of P(λ0).

Let us look in more detail at a linear pencil P = A− λB. Suppose that B
is positive. Then for an eigenvalue λ of P we have

Au = λBu ⇐⇒ B−1/2AB−1/2v = λv ,

with v = B1/2u, and the problem is equivalent to a standard one for a
self-adjoint operator; the spectrum is real!

Thus, the interesting case is when both A and B are not sign-definite —
the pencil spectrum can be non-real.
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Complex eigenvalues and typical questions

Little can be deduced about non-real eigenvalues from the general
principles. E.g. variational approach gives for an eigenvalue λ:

(Au, u) = λ(Bu, u)

and so,
Imλ 6= 0 =⇒

(Au, u) = (Bu, u) = 0

just reduces the dimension slightly. We need to do real work in each
particular case.

Typical problems include: localisation of non-real eigenvalues, asymptotics
of counting functions of all, or only real eigenvalues, dependence on
parameters, etc., and often the use of complex analysis.We look at two
examples.
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Simple matrix pencil

We consider the following class of problems. Fix an integer N ∈ N, and
define the classes of N × N matrices HN;c and Dm,n;σ,τ , where

HN;c =


c 1 0 . . . 0
1 c 1 . . . 0

. . .
. . .

. . .

0 . . . 1 c 1
0 . . . 0 1 c


is tri-diagonal, c ∈ R is a parameter, and
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Simple matrix pencil (contd.)

Dm,n;σ,τ =



σ
. . .

σ
τ

. . .

τ



m rows

 n rows

is diagonal, where m, n ∈ N and σ, τ ∈ C are parameters, and we assume
m + n = N.
We are only going to consider the case σ = −τ = 1, and denote for brevity

Dm,n := Dm,n;1,−1

We study the eigenvalues of the linear operator pencil

Pm,n;c = Pm,n;c(λ) = Hm+n;c − λDm,n

as N = m + n→∞.
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Basics

We start with the following easy result on the localisation of eigenvalues of
the pencil Pm,n;c .

Theorem

(a) The spectrum specPm,n;c is invariant under the symmetry λ→ λ.

(b) All the eigenvalues λ ∈ specPm,n;c satisfy

|λ| < 2 + |c |.

(c) If |c| ≥ 2, then specPm,n;c ⊂ R.
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Rough localisation

Rough asymptotics of eigenvalues as N →∞ is given by

Theorem

The non-real eigenvalues of Pm,n;c converge uniformly to the real axis as
n,m→∞. More precisely,

max{| Im(λ)| : λ ∈ specPm,n;c}

≤ max

{
log(m)

m
(1 + o(1)),

log(n)

n
(1 + o(1))

}
(1)

as m, n→∞.

Note that the estimate is sharp in the following sense: it’s attained, and it
needs both n,m→∞.
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Example, c = 0, n = m = N/2
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c=0  N=400  626  934

Re h

N
 Im

 h
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Asymptotics, c = 0, n = m = N/2

Theorem

Let c = 0, n = m = N/2→∞. The eigenvalues of Pn,n;0 are all non-real,
and satisfy

Imλ = ±1/N ∗ Y (|Reλ|) + o(N−1),

where
Y (u) :=

√
4− u2 log cot(π/4− arccos(u/2)/2)
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Example, c 6= 0, n = m = N/2
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Idea of proof

Do not try to analyse directly a characteristic polynomial in λ.

Set λ− c = z + 1/z , λ+ c = w + 1/w . Then for non-real eigenvalues

Fm(z)Fn(w) = −1,

where

Fm(z) =
zn+1 − z−n−1

zn − z−n
=

sinh((n + 1) log z)

sinh(n log z)
.
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1d Dirac operator

Define a self-adjoint operator

TV =

(
V + k −∇
∇ V − k

)
= −iσ2∇+ kσ3 + V ,

where ∇ =
d

dx
, σ2, σ3 are Pauli matrices, k is the mass, and V (x) is a

potential.

For a given potential V , we denote by ΣV the spectrum of the linear
operator pencil

γ 7→ T0 + γV =

(
k −∇
∇ −k

)
+ γ

(
V 0
0 V

)
.

(The spectral parameter is denoted γ in this problem for historical
reasons.)
Equivalently,

ΣV =
{
γ ∈ C : 0 ∈ spec(TγV )

}
.

(zero modes)
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1d Dirac operator - history

Similar problems, as well as some other related questions, have been
studied in a variety of situations in mathematical literature, e.g [Birman
Solomyak 1977], [Klaus 1980], [Gesztesy et al. 1988], [Birman Laptev
1994], [Safronov 2001], [Schmidt 2010].

In physical literature, our problem appears in the study of electron
waveguides in graphene (see [Hartmann Robinson Portnoi 2010], [Stone
Downing Portnoi 2012] and many references there).

It was shown in [Hartmann Robinson Portnoi 2010] that for the potential
VHRP(x) = −1/cosh(x) the solutions can be found explicitly in terms of
special functions. Moreover, there exists an infinite sequence of coupling
constants γ such that 0 is an eigenvalue of the operator TγVHRP

.
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Function classes

All our potentials V are real valued and locally L2.

Let V0 denote the class of such potentials which additionally satisfy

‖V ‖L2(x−1,x+1) → 0 as |x | → ∞.

In the literature, V0 is sometimes denoted as c0(L2).

Let V1 denote the class of real valued locally L2 potentials which satisfy∫
R
|V (x)|dx < +∞;

that is, we require V to be integrable. Equivalently, we can define
V1 = V0 ∩ L1. The class V1 is sometimes denoted as `1(L2).
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General bounds

Firstly we consider the number of points of ΣV lying inside the disc
{z ∈ C : |z | ≤ R} of radius R ≥ 0.

Theorem

Suppose V ∈ V1. Then

#
(
ΣV ∩ {z ∈ C : |z | ≤ R}

)
≤ C ‖V ‖L1R

for any R ≥ 0, where C is a universal constant (we can take C = 4e/π).
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General bounds (contd.)

Restricting our attention to real points we have the following
complementary lower bound

Theorem

Suppose V ∈ V1. Then

#(ΣV ∩ [0,R]) ≥ R

π

∣∣∣∣∫
R
V (x)dx

∣∣∣∣+ o(R)

as R →∞, while the same estimate holds for #(ΣV ∩ [−R, 0]) (by
symmetry).

In particular, ΣV ∩ R contains infinitely many points if∫
R V (x)dx 6= 0.
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Single-signed potentials

In general, the set ΣV may contain complex eigenvalues — even though
the operator TV is self-adjoint. However

Theorem

If V ∈ V0 is single-signed then ΣV ⊂ R.

Then the general bound turns into asymptotics:

Theorem

Suppose V ∈ V1 is single-signed. Then

#(ΣV ∩ [0,R]) =
R

π

∣∣∣∣∫
R
V (x)dx

∣∣∣∣+ o(R) =
‖V ‖L1

π
R + o(R)

as R →∞.
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Anti-symmetric potentials

For potentials of variable sign the behaviour of the γ-spectrum may be
different, in some cases quite drastically so. For anti-symmetric potentials
we have the following

Theorem

If V ∈ V0 is anti-symmetric then ΣV ∩ R = ∅.

Note that, the γ-spectrum may still contain an infinite number of complex
eigenvalues.

The absence of real points in the γ-spectrum shows that the general lower
bound obtained is quite sharp.

Theorem also applies to potentials V satisfying the condition
V (a + x) = −V (a− x) for some a ∈ R and all x ∈ R.
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Discussion of the results

Our results give information about the asymptotics of the counting
function #(ΣV ∩ [0,R]) as R →∞. We’ve already seen two cases when
the results give leading term asymptotic behaviour of

R

π

∫
R
|V (x)|dx and

R

π

∣∣∣∣∫
R
V (x) dx

∣∣∣∣ (2)

respectively.

(Though they coincide if V is sign-definite).
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Discussion of the results (contd.)

The above results may lead to a hypothesis that, in fact, the lower bound
always gives the leading order term in the asymptotics of the counting
function of the spectrum. However, this is not the case; for general
(variable-signed) potentials the precise asymptotic behaviour of
#(ΣV ∩ [0,R]) as R →∞ appears to depend on V in a rather subtle way.
In particular, this behaviour appears to be sensitive to ‘gaps’ in the
potential, namely intervals where V ≡ 0 appearing between components of
supp(V ).

Surprise

We can construct potentials for which the actual asymptotic coefficient
lies anywhere between the modulus of the integral of the potential and the
L1 norm, modulo multiplication by R/π.
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Examples — general setup

We restrict our attention mostly to piecewise constant potentials with
compact support; these allow the easiest analysis and already demonstrate
the full range of effects. Consider points a0 < a1 < · · · < am which
partition the real line into m finite intervals Ij = (aj−1, aj), j = 1, . . . ,m,
and two semi-infinite intervals I− = (−∞, a0) and I+ = (am,+∞).
Consider a potential

V (x) = W
(
x ; [a0, . . . , am]; {v1, . . . , vm}

)
:=

{
vj , x ∈ Ij , j = 1, . . . ,m,

0, x ∈ I− ∪ I+,

(3)
with some given real constants vj .
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Examples — general setup (contd.)

On each interval, we can solve the equations explicitly in trigonometric
functions; matching conditions lead to an explicit characteristic equation
for eigenvalues: γ ∈ ΣV if and only if DV (γ) = 0.

Thus, in each particular case our problem is reduced to constructing
DV (γ) and finding its real or complex roots. We visualise the real roots of
DV (γ) by simply plotting its graph for real arguments.
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Example — One-gap non-zero-integral potentials

Consider the one-gap potentials
V3,g (x) := W (x ; [−g − 1,−g , 0, 2]; {−1, 0, 1}) parametrised by the gap
length g . For each of these potentials,

∫
R V3,g = 1 and ‖V3,g‖L1 = 3. The

graphs of DV3,g (γ) for real γ and g = 0 or g = 1:
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Example — One-gap non-zero-integral potentials (contd.)

We can expect asymptotics of the form

#(ΣV3,g ∩ [0,R]) = Cg
R

π
+ O(1),

as R →∞. For the no-gap potential V3,0 one of our Theorems gives such
an asymptotics with C0 = 1 =

∫
R V3,1. On the hand, DV3,1(γ) has three

times as many real roots as DV3,0(γ) (for sufficiently large γ). This leads
to a constant C1 = 3 = ‖V3,0‖L1 in the asymptotics for the gap potential
V3,1.
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Example — One-gap non-zero-integral potentials (contd.)

This example is just a partial case of a more complicated phenomenon
Consider a general (not necessarily piecewise constant) one gap compact
potential V (x) such that supp(V ) = I1 ∪ I2, where I1 and I2 are compact
intervals separated by a gap of length g > 0, and assume additionally that
V (x) does not change sign on either Ij . If the signs of V |I1 and V |I2
coincide, then the asymptotic counting function involves
C = ‖V ‖L1 =

∣∣∫
R V
∣∣. If, however, the signs of V |I1 and V |I2 are different,

then the asymptotic behaviour is given by a complicated formula which
depends not only upon the gap length g and the values of

∣∣∫
Ij
V
∣∣ but also

upon the rationality or irrationality of the ratio of these two integrals! The
rigorous approach to this involves an intricate analysis based on the
following version of a classical problem

M Levitin (Reading) Self-adjoint linear pencils Banff, 31 July 2013 27 / 32



Counting zeros

Define a function f : R→ R by

f (x) = cos(x) + a cos(bx),

where a and b are real parameters satisfying 0 ≤ a < 1 and b > 0. For any
function φ : R→ R we also set fφ = f + φ. We want to consider fφ as a
perturbation of f = f0 for large x . To this end introduce the family of
conditions

φ ∈ C k(R), φ(k)(x) = o(1) as x →∞ (Ak)

where k ∈ N0 (we’ll only need to consider k = 0, 1, 2).
Fix a perturbation φ. Introduce the counting function

Nφ(R) = #
{
x ∈ [0,R]),

∣∣ fφ(x) = 0
}
∈ N ∪ {0,∞}

We are interested in the asymptotic behaviour of Nφ(R) as R →∞, and
how this behaviour depends on the parameters a and b.
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Counting zeros — small ab

Proposition

Suppose ab < 1 and φ satisfies (A0), (A1). Then

Nφ(R) =
1

π
R + O(1) as R →∞.

Remark

When ab < 1 we get the same asymptotic behaviour for Nφ(R) as in the
case a = 0 (that is, when f = cos).
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Counting zeros — large ab, irrational case

When ab > 1 we can define α, β ∈ (0, π/2) by

α = arcsin

√
a2b2 − 1√
b2 − 1

and β = arcsin

√
1− a2

a
√
b2 − 1

. (4)

Also set u =
2

π

(
bα + β

)
. If we fix b > 1 and vary a from 1/b to 1 it is

easy to check that α increases from 0 to π/2 and β decreases from π/2 to
0; it follows that u varies from 1 to b.

Proposition

Suppose ab > 1, b is irrational and φ satisfies (A0), (A1), (A2). Then

lim
R→∞

Nφ(R)

R
=

1

π
u.
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Counting zeros — large ab, rational case

Proposition

Suppose ab > 1, b is rational and φ satisfies (A0), (A1). Write b = p/q
where p, q ∈ N are coprime. If p and q are odd set P = p and Q = q; if p
and q have opposite parity set P = 2p and Q = 2q. If P + Qu /∈ 4Z then

lim
R→∞

Nφ(R)

R
=

1

π

(
4

Q

⌊
1

4
(P + Qu)

⌋
− P

Q
+

2

Q

)
. (5)

We are using bxc to denote the largest integer which does not exceed x .
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Counting zeros — large ab, rational case (contd.)

Remark

From (5) and the bounds x − 1 ≤ bxc ≤ x we get

1

π
u − 2

Qπ
≤ lim

R→∞

Nφ(R)

R
≤ 1

π
u +

2

Qπ
.

Using the size of Q as a measure of ‘how irrational’ b is it follows that the
result for irrational b can be viewed as a limit of the rational case.
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