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Broken Drums Transplantations Group Structure Results Proofs

Broken Drums

• M a compact flat manifold with piecewise smooth boundary ∂M

• ∂M = ∂DM ∪ ∂NM for some open, smooth, disjoint ∂DM, ∂NM

Zaremba Problem: ϕ ∈ C 0(M) ∩ C∞(M◦ ∪ ∂DM ∪ ∂NM)

∆ϕ = λϕ on M◦

ϕ = 0 on ∂DM
∂ϕ
∂n = 0 on ∂NM
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Broken Drums
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• ∂M = ∂DM ∪ ∂NM for some open, smooth, disjoint ∂DM, ∂NM

Zaremba Problem: ϕ ∈ C 0(M) ∩ C∞(M◦ ∪ ∂DM ∪ ∂NM)

∆ϕ = λϕ on M◦

ϕ = 0 on ∂DM
∂ϕ
∂n = 0 on ∂NM

Global Assumption

These mixed boundary conditions give rise to an extension of ∆|C∞
0 (M◦)

that is self-adjoint and has discrete spectrum

0 ≤ λ0 ≤ λ1 ≤ . . .

In particular, L2(M) is the Hilbert direct sum of its eigenspaces.
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Broken Drums Transplantations Group Structure Results Proofs

Inverse Spectral Geometry

Spectral invariants (obtained form heat kernel expansions):

• dim (M)

• vol (M)

• vol (∂DM)− vol (∂NM)

• Number of components of M if ∂M = ∂NM

Levitin, Parnovski, Polterovich (2006)

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 4/31



Broken Drums Transplantations Group Structure Results Proofs

Inverse Spectral Geometry

Spectral invariants (obtained form heat kernel expansions):

• dim (M)

• vol (M)

• vol (∂DM)− vol (∂NM)

• Number of components of M if ∂M = ∂NM

Levitin, Parnovski, Polterovich (2006)

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 4/31



Broken Drums Transplantations Group Structure Results Proofs

The Cut and Paste Proof

Buser (1986)

Transplantation method: Cut eigenfunctions on M into pieces ϕj and

superpose these restrictions linearly on the blocks of M̂

ϕ̂i =
∑

j

Tij ϕj

M M̂
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Broken Drums Transplantations Group Structure Results Proofs

The Cut and Paste Proof

Suppose

• ϕ̂ ∈ C 0(M̂) ∩ C∞(M̂◦ ∪ ∂DM̂ ∪ ∂NM̂)

• ϕ̂ satisfies boundary conditions (solves Zaremba problem on M̂)

• T = (Tij) is invertible and the inverse transplantation T−1 equally

maps eigenfunctions of ∆̂ to eigenfunctions of ∆

Then

• T and T−1 map eigenspaces of ∆ and ∆̂ into each other, hence

• spec(∆) = spec(∆̂), that is, M and M̂ are isospectral

• T is said to be intertwining (T ◦∆ = ∆̂ ◦ T )
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Broken Drums Transplantations Group Structure Results Proofs

Building Blocks, Reflecting Faces and Tiled Manifolds

• Building block: Compact flat manifold B with piecewise smooth

boundary ∂B =
(⋃C

i=1
∂i

RB
)
∪ ∂DB ∪ ∂NB having open smooth

• Reflecting faces: ∂i
RB ⊆ ∂B each of which has a neighbourhood in

B isometric to an open subset of closed Euclidean upper half space

• Tiled manifold: M is obtained by gluing copies Bi of B along pairs
((∂ck

R Bik , ∂
ck
R Bjk ))k such that M◦ =

⋃
i B

◦
i ∪

⋃
k ∂

ck
R Bik

• Boundary conditions: either originate from B or are selectable

∂
1
RB

∂
2
RB

∂
3
RB∂DB

∂DB

∂NB
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Broken Drums Transplantations Group Structure Results Proofs

Extending Eigenfunctions

Let

• B be a building block with reflecting face ∂RB

• ϕ ∈ C∞(B◦ ∪ ∂RB) be an eigenfunction of ∆ on B◦

• ϕ satisfy Neumann (Dirichlet) boundary conditions on ∂RB

Reflection Principle

ϕ can be continued across ∂RB by itself (by −ϕ) to a smooth function.

Unique Continuation Theorem

There is at most one continuation across ∂RB to a smooth eigenfunction.
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Broken Drums Transplantations Group Structure Results Proofs

Graph Encoding

Buser (1988), Okada and Shudo (2001), Herbrich (2009)

Tiled manifolds can be encoded by edge-coloured loop-signed graphs

Building blocks ⇐⇒ Vertices
Glued reflecting faces ⇐⇒ Links

Unglued reflecting faces ⇐⇒ Loops
Indices of reflecting faces ⇐⇒ Edge colours

Boundary conditions ⇐⇒ Loop signs
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Broken Drums Transplantations Group Structure Results Proofs

Transplantations in Terms of Graphs
Loop-signed graphs are encoded by adjacency matrices Ac :
Non-vanishing off-diagonal entries (connectivity)

Ac

ij = 1 if vertices i and j are joined by a c-coloured edge

Non-vanishing diagonal entries (boundary conditions)

Ac

ii =

{
1 if vertex i has a c-coloured loop with sign N

−1 if vertex i has a c-coloured loop with sign D
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0 0 0 0 0 0 −1





















N

N

N

N D

D D

D

D

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 10/31
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Transplantations in Terms of Graphs
Loop-signed graphs are encoded by adjacency matrices Ac :
Non-vanishing off-diagonal entries (connectivity)

Ac

ij = 1 if vertices i and j are joined by a c-coloured edge

Non-vanishing diagonal entries (boundary conditions)

Ac

ii =

{
1 if vertex i has a c-coloured loop with sign N

−1 if vertex i has a c-coloured loop with sign D

Reflection Principle and Unique Continuation Theorem

If ϕ is a solution of the Zaremba problem given by (Ac)C
c=1, then∑

l A
c

kl ϕl is the smooth extension of its restriction ϕk across the c-face.

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 10/31



Broken Drums Transplantations Group Structure Results Proofs

Transplantations in Terms of Graphs

Herbrich (2009)

Let (Ac)C
c=1 and (Âc)C

c=1 describe Zaremba problems on tiled manifolds.
Then, T = (Tij) is intertwining if and only if

Âc = T Ac T−1 for c = 1, . . . ,C .

For Neumann graphs, Tr(Ac1 Ac2 · · · Ac l ) equals the number of closed
paths on the graph with colour sequence c1c2 . . . c l .

Okada and Shudo (2001), Herbrich (2009)

Graphs are transplantable if and only if for all finite sequences c1c2 . . . c l

Tr(Ac1 Ac2 · · · Ac l ) = Tr(Âc1 Âc2 · · · Âc l ).
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Âc = T Ac T−1 for c = 1, . . . ,C .

For Neumann graphs, Tr(Ac1 Ac2 · · · Ac l ) equals the number of closed
paths on the graph with colour sequence c1c2 . . . c l .

Okada and Shudo (2001), Herbrich (2009)

Graphs are transplantable if and only if for all finite sequences c1c2 . . . c l

Tr(Ac1 Ac2 · · · Ac l ) = Tr(Âc1 Âc2 · · · Âc l ).
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Broken Drums Transplantations Group Structure Results Proofs

Sunada’s Method

Gassmann Triple: Finite group G with subgroups H and Ĥ satisfying

| [g ] ∩ H| = | [g ] ∩ Ĥ| for all g ∈ G .

(G ,H, Ĥ) is Gassmann if and only if IndG
H(1H) * IndG

Ĥ
(1

Ĥ
).

Sunada (1985)

• M a closed Riemannian manifold

• G a finite group acting freely on M by isometries

• H and Ĥ subgroups of G such that (G ,H, Ĥ) is Gassmann

Then, M/H and M/Ĥ are isospectral.
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Isospectrality and Induced Representations

Band, Parzanchevski, Ben-Shach (2009)

If IndG
H(R) * IndG

Ĥ
(R̂), then M/R and M/R̂ are isospectral.

τσ2 +→ (1)
τσ3 +→ (−1)

τ +→ (−1)

τσ +→ (1)
M M/R

M/R̂

G = Isom(M) = D4 = {e,σ,σ2,σ3, τ, τσ, τσ2, τσ3}

H = {e, τ, τσ2,σ2} R : {e +→ 1, τ +→ −1, τσ2 +→ 1,σ2 +→ −1}

Ĥ = {e, τσ, τσ3,σ2} R̂ : {e +→ 1, τσ +→ 1, τσ3 +→ −1,σ2 +→ −1}
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Isospectrality and Induced Representations

Band, Parzanchevski, Ben-Shach (2009)

If IndG
H(R) * IndG

Ĥ
(R̂), then M/R and M/R̂ are isospectral.

Herbrich (2012)

Each pair of transplantable loop-signed graphs gives rise to a triple

(G , ((Hi ,Ri ))i , ((Ĥj , R̂j))j )

such that ⊕

i

IndG
Hi
(Ri ) *

⊕

j

IndG
Ĥj
(R̂j ),

and the pair can be recovered from the triple up to isomorphism.
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Dualisation

+ +

− − −

+

−

+ +

− − −

+

−
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Substitution Method

ND

replacements

N

D

PSfrag replacements

D

⇒
N

D D

D N N

D

D

D

D

1 2 1
2

⇒ 1
2

3
4

1
2

34

Substitutions yield wreath products with imprimitive actions.

There are infinitely many transplantable pairs.
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Pairwise Transplantable Tuples

replacementsPSfrag replacements ND ND

N

D

N N
N

N
D D

D

D

N N

N

N

D D
D

D

N

D

N N
N

N
D D

D

D

N N

N

N

D D
D

D

Levitin, Parnovski, Polterovich (2006)
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The Algorithm

1. Graph generation: Ordered walk on the graph

2. Graph hashing: Trace condition (2009) or

P. Doyle (2010)

Transplantability is
“a non-commutative version of strong isospectrality”.

P(z1, z2, . . . , zC ) = det
(∑C

c=1
zc Ac

)

P(Z1,Z2, . . . ,ZC ) = Tr

((∑C
c=1

Zc ⊗ Ac

)k
)

=
∑

1≤c1,c2,...,ck≤C

Tr




k∏

j=1

Ac j



 Tr




k∏

j=1

Zc j





3. Graph sorting: Merge sort
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Pairs with 2 Edge Colours

D N D N

Levitin, Parnovski, Polterovich (2006)

D N

D N

In general
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Pairs with 3 Edge Colours

Number of Loop-signed Transplantable Transplantable

Vertices Graphs (Treelike) Pairs (Treelike) Classes (Treelike)

2 40 (30) 9 (6) 3 (2)

3 128 (96) 0 (0) 0 (0)

4 737 (472) 118 (64) 28 (18)

5 3 848 (2 304) 0 (0) 0 (0)

6 24 360 (12 792) 957 (294) 176 (56)

7 156 480 (73 216) 112 (112) 32 (32)

8 1 076 984 (439 968) 13 349 (2 112) 2 343 (375)

9 7 625 040 (2 715 648) 0 (0) 0 (0)

10 55 931 952 (17 203 136) ? ? ? ?

11 420 522 592 (111 132 672) ? ? ? ?

12 3 238 019 281 (730 325 760) ? ? ? ?

13 25 434 892 136 (4 868 669 440) ? ? ? ?

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 19/31



Broken Drums Transplantations Group Structure Results Proofs

Pairs with 3 Edge Colours

Number of Edge-coloured Dirichlet Neumann Treelike

Vertices Graphs Trees Pairs Classes Pairs Classes Pairs Classes

7 1 407 143 7 3 7 3 7 3

8 6 877 450 64 16 28 8 0 0

9 28 665 1 326 0 0 0 0 0 0

10 142 449 4 262 0 0 0 0 0 0

11 681 467 13 566 34 9 70 19 0 0

12 3 535 172 44 772 2 362 440 42 10 0 0

13 18 329 101 148 580 26 9 26 9 26 9

14 99 531 092 502 101 345 77 798 163 42 7

15 546 618 491 1 710 855 51 13 159 33 15 4

16 3 098 961 399 5 895 090 ? ? ? ? ? ?

17 17 827 256 505 20 470 230 ? ? ? ? ? ?

c©Peter Herbrich (Dartmouth College) On Inaudible Properties of Broken Drums BIRS (August 2, 2013) 19/31



Broken Drums Transplantations Group Structure Results Proofs

Broken Gordon-Webb-Wolpert Drums

Gordon, Webb, Wolpert (1992)
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Broken Gordon-Webb-Wolpert Drums

Band, Parzanchevski, Ben-Shach (2009)
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Broken Gordon-Webb-Wolpert Drums

Conjectured by Driscoll, Gottlieb (2003)
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Broken Gordon-Webb-Wolpert Drums

New isospectral pair
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Self-Dual Pairs

One cannot “hear” which parts are broken!

DD

D

NN

N

DD

D

NN

N

Jakobson et al. (2006)
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Fundamental Group

One cannot “hear” the fundamental group of broken drums!

D

D

N

N D N

Levitin, Parnovski, Polterovich (2006)

D N

D

D D

N

NN
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Orientability

One cannot “hear” whether a broken drum is orientable!

NN

N N NN N N

Bérard, Webb (1995)
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NN

N N NN
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New pair obtained by braiding
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Orientability

One cannot “hear” whether a broken drum is orientable!

NN

N N NN

N N

New pair obtained by braidingP. Doyle (2010)

There is no such pair of connected Dirichlet graphs.
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D

D
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Connectedness

One cannot “hear” whether a drum is connected!

D N
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D
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Isotropy Order

One cannot “hear” whether a drum is broken!

NN

D

D

D

D

D

DD

D

D

D

D

DD

D

D

D

DD

D

D

An orbifold can be Dirichlet isospectral to a manifold!
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Thank you for your attention!

P. Herbrich, On Inaudible Properties of Broken Drums - Isospectral Domains
with Mixed Boundary Conditions, preprint arXiv:1111.6789v2
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Broken Drums Transplantations Group Structure Results Proofs

Extending Eigenfunctions

Proof of Reflection Principle.

Using local coordinates (x1, x2, . . . , xd ), it suffices to prove:
If

• ϕ ∈ C∞
(
(−l , l)d−1 × (−l , 0]

)
for some l > 0,

• ∆ϕ = λϕ on (−l , l)d−1 × (−l , 0), and

• ∂ϕ
∂xd

|xd=0 ≡ 0 (ϕ|xd=0 ≡ 0),

then ϕ can be extended to a smooth function on (−l , l)d by setting

ϕ(x1, . . . , xd−1, xd ) = ±ϕ(x1, . . . , xd−1,−xd ) for xd > 0.

This follows from elliptic regularity theory since ϕ ∈ C 1((−l , l)d ) and
therefore it is a weak solution of (∆ − λ)ϕ = 0 on (−l , l)d .
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Broken Drums Transplantations Group Structure Results Proofs

Transplantations in Terms of Graphs

Proof of Transplantation Theorem.

• If Âc T = T Ac for all c, and if ϕ solves the Zaremba problem given
by (Ac)C

c=1, then ϕ̂ with ϕ̂i =
∑

k Tik ϕk solves the Zaremba

problem given by (Âc)C
c=1 since Âc

ij = ±1 implies

±ϕ̂j = Âc

ij ϕ̂j = (Âc T ϕ)i = (T Ac ϕ)i =
∑

k

Tik

(
∑

l

Ac

kl ϕl

)

.

• If T is intertwining, then for all solutions ϕ of the Zaremba problem
given by (Ac)C

c=1,

T Ac ϕ = Âc ϕ̂ = Âc T ϕ, hence T Ac − Âc T = 0.
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Transplantations in Terms of Graphs

Proof of Trace Theorem.

G = 〈A1,A2, . . . ,AC 〉 and Ĝ = 〈Â1, Â2, . . . , ÂC 〉 are finite since they act
faithfully on

{e1, e2, . . . , eV ,−e1,−e2, . . . ,−eV } .

Define Φ : FC
! G via Φ(c±1

1
. . . c±1

l ) = Ac l · · · Ac1 , similarly Φ̂.

Since ker(Φ) =
{
w ∈ FC | Tr (Φ(w)) = V

}
= ker(Φ̂), we have

G * FC/ ker(Φ) * Ĝ with isomorphism I(Φ(.)) = Φ̂(.).

The representations id : G → GL(CV ) and îd ◦ I : G → GL(CV ) have
equal characters, so there exists T with T Φ(.) = Φ̂(.)T .

There is t ∈ R such that Re(T ) + t Im(T ) is invertible.
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! G via Φ(c±1

1
. . . c±1

l ) = Ac l · · · Ac1 , similarly Φ̂.

Since ker(Φ) =
{
w ∈ FC | Tr (Φ(w)) = V

}
= ker(Φ̂), we have

G * FC/ ker(Φ) * Ĝ with isomorphism I(Φ(.)) = Φ̂(.).

The representations id : G → GL(CV ) and îd ◦ I : G → GL(CV ) have
equal characters, so there exists T with T Φ(.) = Φ̂(.)T .

There is t ∈ R such that Re(T ) + t Im(T ) is invertible.
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G * FC/ ker(Φ) * Ĝ with isomorphism I(Φ(.)) = Φ̂(.).

The representations id : G → GL(CV ) and îd ◦ I : G → GL(CV ) have
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Isospectrality and Induced Representations

Obtaining Group Data.

G = 〈A1,A2, . . . ,AC 〉 and Ĝ = 〈Â1, Â2, . . . , ÂC 〉 with isomorphism
I : G → Ĝ given by Ac1Ac2 · · ·Ac l +→ Âc1Âc2 · · · Âc l .

Choose one vertex vi , resp. v̂j , in each connected component.

Each Ac and Âc acts on {{e1,−e1} , {e2,−e2} , . . . , {eV ,−eV }}.

Hi = G{evi
,−evi

} = {g ∈ G | gvivi
= ±1}

Ĥj = I−1(Ĝ{e v̂j
,−ev̂j

}) =
{

g ∈ G | (I(g))v̂j v̂j
= ±1

}
,

Ri : Hi → R R(g) = gvivi
R̂j : Ĥj → R R̂(g) = (I(g))v̂j v̂j

.

χ⊕
i Ind

G
Hi

(Ri )
(Ac1Ac2 · · ·Ac l ) = Tr(Ac1Ac2 · · ·Ac l )

χ⊕
j Ind

G

Ĥj
(R̂j )

(Ac1Ac2 · · ·Ac l ) = Tr(Âc1Âc2 · · · Âc l )
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Cayley and Schreier Coset Graphs

G a finite group generated by involutions (γc)C
c=1

H a subgroup with real linear representation R
Schreier coset graph ΓG

(γc )C
c=1

/R with vertices {Hg | g ∈ G}

• Hg
c

←→ Hg ′ ⇔ Hg γc = Hg ′

• If Hg γc = Hg , then Hg has a c-coloured loop (R(g γc g−1) = ±1)

σ τσ3

e

τ

σ3τσ

σ2

τσ2

Cayley graph ΓD4
(τ,τσ3)

ΓD4
(τ,τσ3)/R

1

2

D

N

ΓD4
(τ,τσ3)/R̂

1

2

D

N
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