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INTRODUCTION: THE ANDERSON MODEL

The model describes the behavior of an electron in a random environment (e.g. in Z%).
- free electron: Laplace operator

(—A) ) =Y ($(x) = d(»)

yrox

o(—A) = 0ac(—A) = [0,4d],  generalized eigenfunctions: e J

+ environment: random potential (V.),cz« iid random variables

(Vo)(x) = Vi ¢(x)

We assume that the distribution of V, is absolutely continuous with bounded
density p and with support (—po, po). Almost surely:

o(V) = opp(V) = (—=po,po),  eigenfunctions: &, € £*(Z%) J

* Anderson model:
H=-A+V with o(H) = [—po,4d + po] a.s.



INTRODUCTION: ANDERSON LOCALIZATION

FROHLICH & SPENCER 83, AIZENMAN & MOLCHANOV ’93
There is a constant C(p) > 2d such that in the energy range
{|E — 2d| > C(p)}

the operator
H=-A+V

has almost surely only pure point spectrum {);};en with exponentially localized,
£2(z%)-normalized eigenfunctions {e;};ex:

o(H) N{|E —2d| = C(p)} = {N}jen

and
|;(x)| < Cexp (—c|x —x])

In particular, there is a finite r > 0 such that ¢; is localized in B, (x;):

1

2
>5.

¢j|B,.(,xj)




QTR T
W "

¥
)

s

(T




INTRODUCTION: THE ANDERSON MODEL ON A TREE
Consider a regular tree 7 of degree K + 1 > 3 and

Hr = —-Ar+V.
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INTRODUCTION: THE ANDERSON MODEL ON A TREE
Consider a regular tree T of degree K + 1 > 3 and

Hr = —-Ar+V.
The spectra are given by

o(=A7) = (K+1-2VK, K+ 1+2VK)
o(Hr) = (K+1—-2VK — po, K + 1+ 2VK + po)

KLEIN '98, AIZENMAN & WARZEL °13

« There is an interval I, C (K + 1 — 2+/K, K + 1 + 2+/K) such that almost surely
Ip N O'ac(H’T) = Ip .

 For po small enough there is almost surely a.c. spectrum up to the spectral edges.

= gac(H7) IS not empty. J
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RESULTS: FINITE REGULAR GRAPHS

Let G,k denote the set of all simple,
K + 1-regular graphs with n vertices.

Pick G, € G, x at random with uniform distribution.

LEMMA (TREE APPROXIMATION)

Forx € G, let -
B (x) = {y € G, : d(x,y) < logg(n)/2}

F, = {x € G, : B,(x) is acyclic}.

Then, for all e > 0,
[Ful > (1 —€)|Gy

holds asymptotically almost surely as n — oo.
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RESULTS: DELOCALIZAITON OF EIGENVECTORS

Consider the operator
Hn = 7An + \%4

on ¢*(G,) and let ()\}"));':, and (qb}"))}’:, denote the eigenvalues and ¢*(G,)-normalized
eigenvectors.



RESULTS: DELOCALIZAITON OF EIGENVECTORS

Consider the operator
Hn - 7An + \%4

on ¢*(G,) and let ()\}"));':, and (qb}”))}’:, denote the eigenvalues and ¢*(G,)-normalized
eigenvectors.

THEOREM (DELOCALIZATION)
Choose G, € G, x and xy € G, uniformly at random. Put

c(")(xo) = 0 i >‘j(n) ¢ oac(HT)
! 16 (o) it A € gac(HT).

Then for any fixed r > 0 the estimate

]
j=1

holds asymptotically almost surely as n — o.

|B: (x0)|

R =

"

B (xo)

In particular, eigenvectors with eigenvalues in oac(H7) are not localized.




IDEAS OF PROOF: CONVERGENCE OF THE DENSITY OF STATES
To study spectral properties of —A, on a regular graph G, define

pnx(I) = (0, xa (A eZ(G ) = Z [ ()|, ICR, x€Gy.

A€l

For fixed I C R:

L3 tall) — 071,

x€Gy
where o7 (I) = (6x, x1(—A7)dx) 27 Is independent of x € T, supported in
(K +1—2vVK,K + 1+ 2v/K), and a.c. with bounded density.
THEOREM (RATE OF CONVERGENCE)
Asymptotically almost surely, we have

2 37 e (=00 ) = a7 (oDl € o




IDEAS OF PROOF: CONVERGENCE OF THE DENSITY OF STATES

To study spectral properties of —A, on a regular graph G, define

pna(D) = (60, X0 (A0 p gy = D 15WI°,  ICR,  x€G,.
A€l
For fixed I C R: |
=D (D) = o7 (D),
x€Gy

where o7 (I) = (4, X,(—AT)(SX)@(T) is independent of x € T, supported in
(K +1—2vVK,K + 1+ 2v/K), and a.c. with bounded density.

THEOREM (RATE OF CONVERGENCE)

Asymptotically almost surely, we have

2 37 e (=00 ) = a7 (oDl € o

If B (x) = {y € G, : d(x,y) < log,(n)/2} is acyclic, then for k = 0,1, ..., [log, (n) ]

[ Wb = 6 (=886 = B (~A7) 8y = [ Wor



IDEAS OF PROOF: CONSEQUENCES

Forz=E +in € C; put

(152 = (B (=80 =280y = [ (A= 2) ' dians

PT(Z) = (6)67 (_AT - Z)il(gx)gZ(T) = /(/\ — Z)ildO'T .

COROLLARY (CONVERGENCE OF THE GREEN FUNCTION)
Assume that B (x) = {y € G, : d(x,y) < log,(n)/2} is acyclic. Then

1

ImC,(x, E+in) — ImC7(E + in)| < Co———— .
I (5, -+ ) = WD (E -+ )| < Gy
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IDEAS OF PROOF: CONSEQUENCES

Forz=E +in € C; put
F"(X’Z) = (5’“ (7A” - Z)iléx)ﬁz((;n) = /(A - Z)ildﬂn,x
PT(Z) = (5):7 (_AT - Z)il(sx)ZZ(T) = /(/\ - Z)ildO'T .

COROLLARY (CONVERGENCE OF THE GREEN FUNCTION)
Assume that B (x) = {y € G, : d(x,y) < log,(n)/2} is acyclic. Then

1
ML, (x, E + in) — ImD7(E + in)| < Ca

nlogy(n)
Fix xo € G, and note thatforallm =1,...,nand n > 0:
D den@F=n > ﬁl%(ﬂl2
(A — A
XEB(xq) XEB(xq)

<n > Z B _/\ \425]( W=n > ImLu(x, An+in).

x€B,(xp) j=1 " XEBy(x)



IDEAS OF PROOF: DELOCALIZATION

Fix xo € G, and note thatforallm =1,...,nand n > 0:

Do @< D mImTa A+ i)

X€By(x0) X€By(x0)

2
H Puls, || =

If B (x) = {y € G, : d(x,y) < log(n)/2} is acyclic for all x € B,(x) then

2 . Cd
| 8nls, || < 1B G0)] (ImDT (A + ) + .

logy (n)

Since o7 is a.c. the function ImI' (A, + in) is bounded as 7 | 0.
Thus

2 1
m < Cu4|B; .
[ 8ma | < €CalBr)lio s J

—> Asymptotically almost surely, none of the ¢,, is localized in B, (xo).
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