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Nodal sets

• (M, g) a compact, real-analytic Riemann surface with ∂M = ∅.

• Consider an L2-basis of Laplace eigenfunctions ϕ
λ
∈ Cω(M) with

−∆gϕλ = λ2ϕ
λ
.

• The nodal set of ϕ
λ

is by definition

Nϕλ = {x ∈M : ϕλ(x) = 0}.

Nϕλ is the least likely place for a quantum particle in the state ϕλ to be.
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The Problem

• For H real analytic curve, find upper bounds for #(Nϕ
λ
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“Bad” curves on the Torus

On M = T2, the eigenfunctions

ϕ
n,m

(x, y) = sin(2πnx) sin(2πmy)

vanish on H = {y = 0} and on H = {x = 0}.

A more general result holds:

Theorem [Bourgain-Rudnick, 2010].

H is a segment of a closed geodesic ⇔ ∃ {ϕ
λjk
}
k

with ϕ
λjk
|
H

= 0.
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Good curves

• Definition. A curve H is said to be good if for some constants C0 > 0,
λ0 > 0

‖ϕλ‖L2(H) ≥ e−C0λ for all λ > λ0.

• Example. The domain boundary H = ∂Ω for Ω ⊂ R2 is always good
(Neumann boundary conditions).

• The goodness condition is likely to be generically satisfied BUT for general
curves the goodness condition is not easy to verify for all eigenfunctions.
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Positive results known

Theorem [Toth - Zelditch, 2009]
Let Ω ⊂ R2 be an analytic, bounded planar domain. Let H ⊂ int(Ω) be a real
analytic good curve. For all Neumann eigenfunctions

#(Nϕ
λ
∩H) ≤ O

H,Ω
(λ).
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Let M = T2 and H ⊂M have strictly positive curvature.
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Positive results known

Theorem [El-Hajj –Toth, 2012].

Let Ω ⊂ R2 bounded, piecewise-smooth convex domain with ergodic billiard flow.

Let H be a closed Cω interior curve with strictly positive geodesic curvature.

Let (ϕλjk )∞k=1 be a quantum ergodic sequence of Neumann or Dirichlet
eigenfunctions in Ω.

Then H is good and #(Nϕλjk ∩H) = O
H,Ω

(λjk).
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Main result: Compact surfaces

Theorem [C- Toth, 2013]

Let (M, g) be a compact, real analytic Riemann surface with ∂M = ∅.

Let H ⊂M be a closed analytic good curve.

Then, for all λ ≥ λ0,
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Application

Let (M, g) be a compact, real-analytic surface with ∂M = ∅. Suppose there exists
an isometric involution that fixes γ with

M = M− ∪ M+, γ = ∂M+.
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Application

Theorem [C - Toth, 2013]

Let (M, g) be a compact, real-analytic surface with ∂M = ∅. Suppose there exists
an isometric involution that fixes γ.

Let U ⊂M be a Fermi collar neighbourhood of γ and suppose that H ⊂ U is a
real-analytic curve with strictly-positive geodesic curvature.

Let (ϕ
λjk

)∞j=1 be a quantum ergodic sequence of Laplace eigenfunctions that are

even (odd) with respect to the involution.

Then,
#(Nϕ

λjk

∩H) = O
M,H

(λjk).

Remark. The result holds for ALL eigenfunctions on QUE surfaces with isometric

involution (e.g arithmetic surfaces with isometric involutions [Lindenstrauss]).
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Complexification of Riemannian surfaces

• A compact real analytic Riemannian manifold (M, g) can always be
complexified to MC (Bruhat-Whitney).

Example: (Rn)C = Cn
Example: (Rn/Zn)C = Cn/Zn.

• Cw functions on M extend to holomorphic functions on MC.

Example: ϕ
n
(x) = einx extends to

ϕC
n
(x+ iy) = ein(x+iy) = e−nyeinx.

Example: squared Riemann distance r2(x1, x2) is analytic close to the
diagonal so it extends to r2C(z1, z2).
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Complexification of Riemannian surfaces

• Tube function: Set ρ(z) = −r2C(z, z̄).

Example: In RC = C, and
√
ρ(z) =

√
−(z − z̄)2 = 2|=z|.

• Define the Grauert tube of radius ε > 0 (small) by

MC
ε = {z ∈MC :

√
ρ(z) ≤ ε}.

• There is a maximal Grauert tube radius εmax. For ε ≤ εmax

ϕC
λ : MC

ε → C

is holomorphic.
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Why do we complexify?

Let Br ⊂ C denote the open ball centred at 0 of radius r.

For v ∈ Cω(B̄1) consider its frequency function

F (v) =

∫
B1
|∂zv(z)|2 dz dz̄∫

∂B1
|v(z)|2 dσ(z)

.

Theorem [Lin (1991)] There exists a universal r ∈ (0, 1) for which

#{Nv ∩Br} ≤ 2F (v)

for all v ∈ Cω(B̄1).
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Translating the problem to the Disc

- Let q : [−π, π]→ H be a unit speed, 2π-periodic parametrization of H, extend
it to [−2π, 2π].

- Then qC : [−2π, 2π]C → HC
ε ⊂MC

ε .

- Choose Cε ⊂ [−2π, 2π]C with ∂Cε analytic and 0 /∈ ∂Cε.

- By Riemman mapping theorem we may think of Cε as the unit disc B1.

ε

Φ̃

Cε

[−2π, 2π]C

2π
0 π−π
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Translating the problem to the Disc

- Define vh := (ϕh ◦ q)C ◦ Φ̃ ∈ Cω(B̄1).
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- Then
#{Nϕh ∩H} = # {Nϕh◦q ∩ [−π, π]} ≤ 2F (vh).
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Translating the problem to the Disc

- It then follows that

#{Nϕh ∩H} ≤ 2F (vh) ≤ 2
‖∂

T
vh‖L2(∂B1)

‖vh‖L2(∂B1)
.

- Applying the change of variables z 7→ Φ̃(z),

#(Nϕh ∩H) ≤ C ‖∂T (ϕh ◦ q)C‖L2(∂Cε)
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