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Nodal sets

e (M,g) a compact, real-analytic Riemann surface with M = 0.

o Consider an L2-basis of Laplace eigenfunctions ¢, € C*(M) with
—Agp, =N,
e The nodal set of ¢, is by definition
Ney ={z € M : p\(z) = 0}.

N, is the least likely place for a quantum particle in the state ¢, to be.
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Length [Donelly-Fefferman '88]:  length(NV,,) < A

Inner radius [Briining '78],[Mangoubi '06]:  inrad(nodal domain of py) =< A7}
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e For H real analytic curve, find upper bounds for #(N% NH).




“Bad” curves on the Torus

On M = T?, the eigenfunctions
@, (2,y) = sin(27nz) sin(2wmy)

vanish on H = {y =0} and on H = { = 0}.



“Bad” curves on the Torus

On M = T?, the eigenfunctions
@, (2,y) = sin(27nz) sin(2wmy)

vanish on H = {y =0} and on H = { = 0}.

A more general result holds:



“Bad” curves on the Torus

On M = T?, the eigenfunctions
@, (2,y) = sin(27nz) sin(2wmy)

vanish on H = {y =0} and on H = { = 0}.
A more general result holds:

Theorem [Bourgain-Rudnick, 2010].

H is a segment of a closed geodesic <« 3 {‘ij }, with Px, |, =0.
k
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Good curves

e Definition. A curve H is said to be good if for some constants Cy > 0,
/\0 >0
loallpe ey > e~ CoX for all A > ).

e Example. The domain boundary H = 092 for Q@ C R? is always good
(Neumann boundary conditions).

e The goodness condition is likely to be generically satisfied BUT for general
curves the goodness condition is not easy to verify for all eigenfunctions.
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Theorem [Toth - Zelditch, 2009]
Let 2 C R? be an analytic, bounded planar domain. Let H C int(f2) be a real

analytic good curve. For all Neumann eigenfunctions

#(NQOA OH) S OH,Q()\)
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Theorem [Burgain-Rudnick, 2010].
Let M = T? and H C M have strictly positive curvature.

Then H is good and #(N,,, N H) < O, ,(\).

Theorem [Jung, 2011].
Let M = compact hyperbolic surface and H=geodesic circle.

Then H is good and # (N, NH) <O, ().
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Positive results known

Theorem [El-Hajj —Toth, 2012].

Let Q C R? bounded, piecewise-smooth convex domain with ergodic billiard flow.
Let H be a closed C* interior curve with strictly positive geodesic curvature.

Let (<p>\jk)2°=1 be a quantum ergodic sequence of Neumann or Dirichlet
eigenfunctions in Q.

Then H is good and #(/\/wjk NH) =0, ,(\;)-



Main result: Compact surfaces

Theorem [C- Toth, 2013]

Let (M, g) be a compact, real analytic Riemann surface with M = ().



Main result: Compact surfaces

Theorem [C- Toth, 2013]

Let (M, g) be a compact, real analytic Riemann surface with M = ().
Let H C M be a closed analytic good curve.



Main result: Compact surfaces

Theorem [C- Toth, 2013]

Let (M, g) be a compact, real analytic Riemann surface with M = ().
Let H C M be a closed analytic good curve.

Then, for all A > X,
#(NSOA QH) S OM,H()\)’
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Application

Theorem [C - Toth, 2013]

Let (M, g) be a compact, real-analytic surface with 9M = (). Suppose there exists
an isometric involution that fixes .

Let U C M be a Fermi collar neighbourhood of v and suppose that H C U is a
real-analytic curve with strictly-positive geodesic curvature.

Let (@Ajk )721 be a quantum ergodic sequence of Laplace eigenfunctions that are

even (odd) with respect to the involution.

Then,
#(-/\/’90A OH) :OM,H(A]'IC)'

Jk



Application

Theorem [C - Toth, 2013]

Let (M, g) be a compact, real-analytic surface with 9M = (). Suppose there exists
an isometric involution that fixes .

Let U C M be a Fermi collar neighbourhood of v and suppose that H C U is a
real-analytic curve with strictly-positive geodesic curvature.

Let (¢, )72, be a quantum ergodic sequence of Laplace eigenfunctions that are
Tk
even (odd) with respect to the involution.

Then,

)

#(-N’c,oA . DH) = OM,HO‘jk)'

Remark. The result holds for ALL eigenfunctions on QUE surfaces with isometric
involution (e.g arithmetic surfaces with isometric involutions [Lindenstrauss]).
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Complexification of Riemannian surfaces

e A compact real analytic Riemannian manifold (M, g) can always be
complexified to M® (Bruhat-Whitney).

Example: (R™)® =C"
Example: (R"/Z")¢ = C"/Z".

e C" functions on M extend to holomorphic functions on MC.
Example: ¢ (z) = ™® extends to
@S(x + 'Ly) — ein(m+iy) — e—nyeinm.

Example: squared Riemann distance 72 (21, x2) is analytic close to the
diagonal so it extends to 72 (z1, 22).
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Complexification of Riemannian surfaces

e Tube function: Set p(z) = —r2(z, 2).

Example: In R® = C, and /p(2) = /—(z — 2)? = 2|z|.
o Define the Grauert tube of radius € > 0 (small) by
ME ={ze M®: /p(z) <e}.
e There is a maximal Grauert tube radius €,,40. For € < enmaz
¢S ME —C

is holomorphic.
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Why do we complexify?

Let B, C C denote the open ball centred at 0 of radius r.

For v € C¥(By) consider its frequency function

s |0,v(2)]? dz dz

B = o)

Theorem [Lin (1991)] There exists a universal r € (0, 1) for which
#{N, N B,} <2F(v)

for all v € C¥(By).
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Translating the problem to the Disc

- Let ¢ : [-m, 7| — H be a unit speed, 27-periodic parametrization of H, extend
it to [—2m, 27).

- Then ¢© : [-27,27]¢ — HE ¢ ME.
- Choose C. C |27, 27" with C, analytic and 0 ¢ OC-..

- By Riemman mapping theorem we may think of C; as the unit disc Bj.
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Translating the problem to the Disc

- Define v, := (pn 0 q)C 0 ® € C¥(By).

27
o
N

N , o (enoqt

#{Naph NH} = #{Nq:wq N [=m, 7|} <2F(vs).

- Then
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- It then follows that

10z vnllr2 080
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Translating the problem to the Disc

- It then follows that

) < ||6 Uh||L2(BB1).
||’Uh||L2(aBl)

#{Np, NH} <2F(v
- Applying the change of variables z — ®(z),

102 (¢n © q)° ||L2(aC)
[l (on 0 Q)C”L?(ac )

# N NH) <C
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Main Theorem: H good = #(Ny, N H) = O(\)

Let x,, € C(T*OC.) with

(5,0) 1 Jo|<R
y0) =
Xn 0 |o|>R+1.

And so

10, (en © @)% r2(0c.)
#WN,, NH)<C <
Wer N H) < O o o0

”(1 - Oph(XR))aT<‘Ph o q)c||L2(aoa)

Opn(X )0z (0n 0 @)Cl,,
10Dk (X 5)0y (1 © )° | weo , ¢

||(S0h o Q)C”LQ(Gce) ||(<Ph S Q)C||L2(8CE)
O(h—=1)=0(X) O(h=1e=C/h)
- We use the complexified Heat kernel to
- Follows from L2-boundedness of reproduce the eigenfunctions
Opn(xg)h0y

- We use contour deformation of 9C: to
make the phase of the FIO be positive
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